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Abstract

In this paper we present a comprehensive method
for identifying probable shadow regions in an image. Doing
so is relevant to computer vision, colour constancy, and
image reproduction, specifically dynamic range compression.
Our method begins with a segmentation of the image into
regions of the same colour. Then the edges between the
regions are analyzed with respect to the possibility that each
is due to an illumination change as opposed to a material
boundary. We then integrate the edge information to produce
an estimate of the illumination field.

Introduction

In this paper we present a comprehensive method for
identifying probable shadow regions in an image. Shadow
identification is an important problem which receives
relatively little attention. Shadow identification is relevant
to computer vision, colour constancy, and image
reproduction. In the case of computer vision, a shadow
boundary often has the same effect as a segmentation error.
Such ambiguities can increase the amount of searching
among the possible collections of segments used to form
objects. In the case of colour constancy, illumination which
varies spatially over a scene presents major problems for
most colour constancy algorithms. Furthermore, it has been
shown that illumination change can be very useful for
colour constancy [1, 2], but the algorithms so far require the
illumination change to be identified. This is done in [2] in
the case of smooth illumination, but fails if there is a hard
shadow boundary. The work in this paper is a first step in
the integration of abrupt illumination change and colour
constancy.

Moving onto image reproduction, an important
application of this work is dynamic range compression. As
is well known, the dynamic range of natural scenes is much
larger than that which can be reproduced. Thus, there is
much interest in compressing image dynamic range for more
appropriate reproduction [3-6], especially as the ability to
record the range of such scenes is improving. The major
contributor to the large dynamic range of scenes is

illumination variation. Material changes rarely have a ratio
larger than 30 to 1, whereas the differences between bright
sunlight and a nearby shadow can easily exceed this [3].
Despite this observation, current methods do not model
shadows. Rather, pixels are modified based on how they
compare to simple statistics of surrounding neighbourhoods,
often combining the results of a number of scales or
instances. Such methods cannot distinguish between a dark
shadow and a dark region with the same camera response,
even if it can be argued that there is ample evidence
suggesting one case or the other. Thus we posit that for
dynamic range compression it is helpful, and perhaps
necessary, to take a physics based approach. We will now
outline such a method.

We begin with a conservative segmentation of the
image. As in Barnard et al. [2], since we are mostly
concerned with analyzing the illumination, it does not
matter if areas due to surfaces with very similar colour (such
as a white piece of paper on a white wall) are combined.
These considerations mean that we can normally obtain a
sufficiently accurate segmentation for the task at hand.

Given a segmentation, we then apply a number of
tests to pairs of neighboring segments. Some of these tests
(in fact, the most interesting ones)  include consideration of
other segment pairs. Each test leads to a different degree of
belief about the boundary between the two segments being a
shadow, and each test therefore has an associated score. The
final score for a pair of neighboring segments is simply the
maximal score found among all tests. From these edge
scores we then compute the relative illumination field for
the image, which can be used for colour constancy,
computer vision applications, and dynamic range
compression. We now provide additional details.

Determining Crisp Shadow Edges

Our method deals both with crisp shadows and soft shading.
We first develop the theory for crisp shadows, and then
introduce modifications to deal with, and take advantage of,
the observation that shadow boundaries are often gradual. To
estimate the plausibility that an edge is a shadow edge we
use a number of tests, each of which has a score associated



Figure 1: Strong evidence for a shadow: First, the change
across the shadow boundary for both regions A and B is
consistent with a valid shadow boundary. Second, the
changes across the adjacent shadow boundaries are
similar. Third, the reflectance A and B are quite different.

with it, which roughly corresponds to the amount of
evidence that passing the test represents. The actual amounts
are set somewhat arbitrarily. We are currently working
towards a more principled scoring, but we note that
preliminary results indicate that the exact numbers are not
that important. We remind the reader that the final score for
the boundary is the maximal score found among all tests.
The tests will be described in rough order of strength.

The weakest test is passed if the change in camera
response (RGB) over the boundary is simply consistent with
a possible illuminant change. This, and many of the
conditions which follow, depend somewhat on the accuracy
of the diagonal model of illumination change1 [7, 8], which
holds fairly well for our camera [9, 10]. Following
FinlaysonÕs work on colour constancy [11], we consider the
set of possible illuminants to be restricted to common
indoor and outdoor illuminations. Doing so constrains the
chromaticities of the expected illuminants, but we consider
their magnitudes to be unconstrained. Thus the RGB of the
possible illuminants form a cone in RGB space. We
construct this cone from a set of roughly 100 measurements
of sources, indoor illuminations, and outdoor illumination
[10]. Our illuminant set is available on-lineÊ[12]

Given the diagonal model and a set of illuminants,
we can then determine if the RGB ratio over a boundary can
be due to an illumination change. If it is, then one side of
the boundary (the shadow side) must be illuminated by a
shadow illumination RS ,GS ,BS( ) , and the other side must

also be illuminated by the shadow illumination
RS ,GS ,BS( )  together with some additional non-shadow

illumination RN ,GN ,BN( ) . Thus the RGB ratio from the

shadow side (the darker side) to the non-shadow side is given
by:
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where both RS ,GS ,BS( )  and RN ,GN ,BN( )  must be in the

3D cone described above. Thus we can pre-compute the
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 based on the

cones, smooth the results, and enter them into a
discretization of the unit cube for fast access. We note that
the fact that a shadow edge must have a strict decrease in
each of three channels excludes some regions which appear

1 Consider a white patch under two different
illuminants. Suppose that under the first illuminant the color
is [r,g,b] and under the second illuminant the color is [rÕ,gÕ,bÕ].
It is thus possible to map the color of white under the first
illuminant to the color under the second by post-
multiplication by a diagonal matrix: [rÕ,gÕ,bÕ] = [r,g,b]
diag(rÕ/r, gÕ/g, bÕ/b). If the same diagonal matrix transforms
the RGB of all surfaces (not just the white ones) to a good
approximation, then we say that we have a diagonal model of
illumination change.

to the be plausible shadows due to being darker overall.
Specifying the nature of the decrease, as done above,
excludes additional candidates.

Ratios which are valid illumination changes, as
determined above, can usually also be due to a material
boundary, and thus the above is only moderate evidence for a
shadow boundary. However, shadows commonly fall over
more than one region in an image, and exploiting this
observation is the key to developing more powerful tests.
For example, if the same kind of shadow falls on two
different surface reflectances (not necessarily connected), then
we expect to see two similar shadow ratios with different
RGB in the shadow regions and different RGB in the non-
shadow regions. The occurrence of two such parallel but
distinct possible shadow jumps are less likely to be due to
material changes than a single shadow jump, and thus we
score this test higher. Similarly, if we observe three parallel
shadow jumps, all with different shadow RGB (and non-
shadow RGB), the score is higher yet (in this work we stop
at three). We stress that for these parallel jump tests, the
proposed illumination ratios need to be similar, and the
proposed surface reflectances, must all be different. For
example, the same kind of proposed illumination ratio
observed on both a red surface (splitting it into light red and
dark red regions) and a green surface (splitting it into light
green and dark green) is taken as better evidence than either
alone.

We feel that when such shadows jumps are
adjacent, the evidence for a shadow is even stronger. Here a
shadow is proposed to cross over a surface boundary such



that four segments are formed, two in shadow and two not in
shadow (see FigureÊ1). Even more evidence, is associated
when an additional similar shadow jump (but with yet a
different shadow RGB) occurs elsewhere in the image.
Finally, when that third shadow boundary is adjacent to the
other two, the score is even higher. In this case, the shadow
boundary crosses three adjacent regions, to form 6 patches.

We include one more test in our method. If the
shadow jump is so large that there is no material boundary
which can account for it, we also take this as very strong
evidence as a shadow boundary. We currently use a ratio of
30 to 1 as the upper limit of albedo change.

Incorporating Soft Shadow Edges and
Gradual Shading

So far we have been treating shadow boundaries as
crisp, and thus the illumination change across the boundary
is well determined. However, it is well known that shadow
boundaries are often quite soft, and, in fact, this observation
has been used to classify shadow and non-shadow edges [13].
Certain segmentation approaches, such as region growing
based on small changes between neighboring pixels, can
sometimes properly ignore the shadow boundary, and grow a
region which corresponds to physical edges only. However,
it is very hard to make this work in a consistent fashion
when there is a mix of shadow boundary strengths.
Normally any reasonable choice of thresholds leads to a
segmentation which stops at some shadow boundaries, but
grows into others, and, as the number of shadow boundaries
which are missed increases, so do the number of other edges
which are missed. Therefore, we take quite a different
approach. In general, the philosophy is to find as many of
the putative shadow boundaries as possible, and then use the
higher level reasoning to determine which ones are shadows.
It should be clear that the tests developed above will fare
better when fewer shadow boundaries are absorbed. Thus we
use a segmentation method which ensures that the RGB's
within each region2 are within a certain small range of each
other, which errs on the side of having too many segments.
For example, a nicely shaded ball may have a number of
stripes, each one representing the next increase in
illumination with respect to our allowed RGB range.

Given this sort of segmentation, applying the tests
as described above may run into trouble, as the shadow
boundaries may be divided into several steps at somewhat
arbitrary points. The key to using such boundaries is to note
that the steps have a well defined structure, discussed further
below, which can be identified. Then a candidate shadow
boundary is declared as two regions separated by zero or
more steps. We ensure that the maximal number of steps are
used, and therefore the steps themselves are not considered as
shadows until later. Interestingly, the steps are characteristic
of illumination change, and thus strengthen the case for the

2Technically, for the results presented in this work,
we segmented using (r=R/(R+G+B), g=G/(R+G+B),
L=R+G+B), not RGB.

proposed shadow boundary. Therefore, in the case that the
plausible shadow has these steps, the score is increased in
proportion to the number of steps. Thus this method
incorporates the use of the softness of shadows without
relying on them. Further, it applies to quite large steps,
such as a classic penumbra region, or big stripes on a
lightly shaded ball.

We now provide further details on the identification
of the shadow steps. The first criteria is location. In general,
we want to consider regions which are between other regions
in the "right way". A clean criteria that covers the desirable
cases exactly is difficult to determine. However, the
following heuristic seems to work well. Consider a region
adjacent to two different regions A and B, and connected to
them via the (possibly broken) boundaries, bA and bB. We
test whether the center of mass of the region is in the
convex hull of bA and bB.

We move onto the colour constraints on the step
regions. We assume that the steps are due to varying
illumination, specifically a blend of the illumination at the
two regions surrounding them. This means, first, that the
sequence of regions are each a plausible illumination change
apart, and second, that the RGB of each step region is
(approximately) a convex combination of the RGB's of the
two regions surrounding it. So far, the combination of the
location and colour tests has proven to be quite robust.

A few remarks with regard to the integration of the
shadow step analysis with the tests explained above are in
order. First, the tests are applied using illumination changes
between the two outside regions. The shadow steps are not
used for this. However, as mentioned above, if the two
regions being considered are separated by shadow steps, then
the score will increase. Finally, the shading boundaries
between the steps inherit the score from the outside regions.

Determining the Illumination Field.

For some applications, such as segmentation into regions of
similar surface reflectance, the shadow information computed
above may be sufficient. However, for many applications,
we need to integrate the information to determine the overall
illumination field. Our method for doing so is as follows:
We simplify matters by solving for the logarithm of the
illumination at each segment. We solve for the illumination
field of each channel separately. We set up a number of
equations which are solved in the least squares sense. To
begin, we note that our method essentially computes relative
illumination, and thus we specify the unknown factor by
setting the sum of the logs of the illuminations to zero.
Also, since our method is based on the relative changes
across adjacent regions, we need to deal with the possibility
that the graph is not connected. Thus we introduce an
equation setting the log of each illuminant component to
zero. Since we solve the equations in the least squares sense,
we arrange that these equations have little effect, except
when there is ambiguity, by giving them a relatively small
weight. The system of equations described so far will ensure



that the recovered relative illumination field is uniformly
one in the absence of any other information.

Each edge between regions is a source of
information. On the assumption that the ratio of the red
pixel values for adjacent regions i and j are due to the
illumination, we have:

log(ei
R ) − log(e j

R )  =  log(
Ri
R j

)
(2)

where ei
R   is the relative value of the red component of the

illumination at region i, and e j
R  is the analogous quantity

for region j. We weight this with the plausibility of the
edge, p, and the length of the edge,ÊL:

pL log(ei
R ) − pL log(e j

R )  =  pL log(
Ri
R j

)
(3)

Similarly, to the extent we believe the edge is not a shadow
edge, the illumination should not change at that boundary:

(1− p)L log(ei
R ) − (1− p)L log(e j

R )  =  0
(4)

These equations are solved in the least squares sense for each
channel. Then the illumination is set to the appropriate
value at each region. Since there are always pixels which do
not belong to any of the segments, we linearly interpolate
the result for those pixels.

Results

We have tested our method on several complex real images
with both distinct and subtle shadows, and have obtained
very promising results. However, shadow identification on
complex real images is a difficult problem, and
misclassification does occur. One of the strengths of this
method is that the shadow information propagation step
serves to resolve ambiguity and mitigate the effect of
misclassification, especially when the goal is simply an
improved image for human viewing.

Figure 2 shows the results on an image with a
strong shadow, and some gentle shading due to surface
curvature. Although not apparent in the black and white
reproduction, there is a significant colour change across the
shadow boundary. The background (shadow) illuminant is
quite blue, and the foreground illuminant is quite yellow.
Thus this scene emulates a standard outdoor scene where the
shadows are illuminated by the blue sky, and the non-
shadow regions are illuminated by both the blue sky and
direct sunlight. The image was taken with a Sony DXC-930
camera which supports the diagonal model well. Figure 2(a)
shows the input image. Figure 2(b) shows the candidate
shadow edges with line segments joining the two regions
sharing the edge. The plausibility of the edges is represented
by the brightness of the segments. White segments join
regions where there is strong evidence that one of them is a
shadow, or more specifically, that the edge between them is
an illumination edge. If the process were perfect, then
adjacent regions from the same surface would be joined with

white segments. Figure 2(c) shows the estimated
illumination field, which is very close to the actual
illumination field. Since the method rarely completely
commits to a specific edge being due to an illumination
change (i.e. "p" in (2) is rarely 1), the least squares fitting
procedure will always produce a few artifacts of the material
edges. We feel this is a reasonable tradeoff for the gain in
robustness. Figure 2(d) shows the spatial variation of the
illumination removed by dividing by the illumination field.
Applications seeking to enhance dynamic range would
normally provide an image somewhere between (a) and (d),
possibly with additional transforms. (Removing all shading
from an image is usually detrimental). Finally we note that
Figure 2(d) has artifacts at the reduced/removed shadow
edges. We are currently considering several methods for
dealing with such artifacts. Since our method implicitly
contains quite a good understanding of the underlying
processes producing the edges, we feel that these problems
can be dealt with.

Conclusion

We have developed a method for analyzing edges with regard
to whether they are likely an illumination edge or a material
edge. The method includes considering whether the edge is a
possible illumination edge based on a set of common
illuminants, whether there are similar changes across
different surfaces, whether the edge is in a geometric
configuration suggestive of a shadow, and whether the edge
is too strong to be a material change. We integrate these
criteria with the observation that illumination changes are
often gradual or somewhat gradual, leading to a specific
structure with our segmentation approach, which can be
exploited. Finally we show how to compute an estimate of
the illumination field from the edge hypothesis. Our method
is therefore ready to be used in conjunction with colour
constancy algorithms, dynamic range compression, as well
as a number of computer vision applications.
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Figure 2. Illustration of the method developed in this paper applied to an image. The original image (a). The segments used showing
lines joining regions separated by a plausible shadow boundary (b). The brightness of the line is proportional to the degree of belief
that the edge is a shadow edge. The estimated illumination field is shown in (c), and the image with the shadow regions corrected
based on the recovered illumination is shown in (d). The appropriate amount of correction is dependent on the application. Here we
correct for the full illumination field effect for illustrative purposes. Other than effects at the edges due to edge localization errors,
the recovery is very good. Note that some of the minor inaccuracies in the illumination field recovery are not noticeable when used to
enhance the image.


