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Camera characterization for color research

We introduce a new method for estimating camera sensitivity functions from spectral power input

and camera response data. We also show how the procedure can be extended to deal with camera

non-linearities. Linearization is an important part of camera characterization and we argue that it is

best to jointly fit the linearization and the sensor response functions. We compare our method with

a number of others, both on synthetic data and for the characterization of a real camera. All data

used in this study is available on-line at http://www.cs.sfu.ca/~colour/data.

INTRODUCTION

The image recorded by a camera depends on three factors: the physical content of the scene, the

illumination incident on the scene, and the characteristics of the camera. Since the camera is an

integral part of the resulting image, research into image understanding normally requires a camera

model. The most common use of camera characterization is to predict camera responses, given an

input energy spectral distribution. This has applications in the development and practical realization

of color-related image processing algorithms, such as computational color constancy algorithms.
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We first introduce the standard camera model used in color-oriented computer vision1,2. We

then discuss previous methods for fitting the parameters of that model (camera sensor response as

a function of wavelength), and introduce a new method for obtaining these parameters. We then

show how the method can be extended so that a proposed camera linearization function can be fit

simultaneously with the camera sensor response functions. This extension takes advantage of the

fact that the data required to estimate camera sensitivity also contains linearization information.

Furthermore, it is beneficial to allow the errors due to the inadequacy of the linearization fit to be

traded against errors due to the inaccuracies in the sensor function fit. Finally we provide results

for both synthetic and real camera characterization experiments. All data used in this study is

available on-line3.

THE CAMERA MODEL

The goal of this work is to develop a model which predicts image pixel values from input spectral

power distributions. In this section we discuss the general  form of the model. For the moment we

assume that all camera controls such as aperture are fixed. Let υ (k )  be the value for the k’th

channel of a specific image pixel and let L(λ )  be the spectral power distribution of the signal

imaged at that pixel. Then we model image formation by1,2:

ρ(k ) = F(k ) (υ (k ) ) = L∫ (λ )R(k ) (λ )dλ (1)

where R(k ) is a sensor sensitivity function for the k’th channel, and F(k )  is a wavelength

independent linearization function, and ρ ( )k  is a the linearized camera response. The key

assumption is that all non-linear behavior is independent of wavelength, given the sensor.  This

model has been verified as being adequate for computer vision over a wide variety of systems2,4-8.

This model is also assumed for the human visual system, and forms the basis for the CIE

colorimetry standard (here F(k )  is the identity function).

As we move around the image plane, the signal is attenuated due to geometric effects, notably

vignetting1, and a fall-off proportional to the fourth power of the cosine of the off axis angle1.
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These effects can be absorbed into either R(k ) or F(k ) . We defer these considerations by using only

the central portion of the image in our experiments.

Similarly, global effects on the overall magnitude of the responses, such as camera lens

aperture and focal length, can also be absorbed into either R(k ) or F(k ) . In fact, for much work in

color, absolute light flux is somewhat arbitrary, being under aperture control, and usually adjusted

by the user or the camera system to give a reasonable image. Partly for this reason, work in color

often uses a chromaticity space which factors out luminance. The most common such space is (r,g)

defined by (R/(R+G+B), G/(R+G+B)). In chromaticity space geometric attenuation effects can be

ignored. On the other hand, if absolute luminance is important, then these effects have to be taken

into account.

Successful use of the above model requires consideration of the function F(k ) . F(k )  reverses

added gamma correction, compensates for any camera offset, and corrects for other more subtle

non-linearities. Even if R(k ) is not required for an application, F(k )  can be important. For example,

reliably mapping into a chromaticity space such as (r,g) requires either an estimate of F(k ) , or

confidence that it is the identity function and thus can be ignored. This can be the case with a

camera designed for scientific use, but inexpensive consumer cameras usually do not give the

operator the option to disable non-linear behavior.

For the practical application of the above model, continuous functions of the wavelength, λ ,

are replaced by samplings of those functions. For example, our data is collected with a

PhotoResearch PR-650 spectroradiometer, which measures data from 380nm to 780nm in 4nm

steps. The function L(λ )  then becomes the vector L, R(k ) (λ )  becomes the vector R(k ), and

equation (1) becomes:

ρ(k ) = F(k ) (υ (k ) ) = L • R(k)
(2)

Using this notation, camera characterization can be defined as finding F(k )  and R(k).
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MOTIVATION

We have become interested in color camera characterization as part of our research into

computational color constancy9. Practically all algorithms for color constancy assume that the

image pixels are proportional to the input spectral power. This is equivalent to assuming either that

F(k )  is the identity function, or that it is known and has been applied to the data. In other words,

color constancy algorithms require ρ(k )  as input, as opposed to the more readily available υ (k ) .

Determining the function R(k ) is also important for computational color constancy. Most

algorithms, including the ones we currently think are the most promising, require an estimate of

camera responses to the real world with its many different surfaces and illumination conditions.

Although it is conceivable to obtain camera responses for a large number of surfaces under a given

illuminant, it is impractical to obtain this data for each camera. Furthermore, some algorithms

require this data for each possible illumination, including combinations of several sources. It is

thus far more effective to first obtain reflectance functions and illuminant spectra, and then to use a

camera model to predict the wide range of camera responses required by these algorithms.

PREVIOUS WORK

Since F(k )  is assumed to be independent of wavelength, it can be determined by stimulating the

camera with varying intensities of a single light source, obtained with neutral density filters, or by

simply moving the source. An appropriate function can then be fitted to the data, or alternatively a

smoothed version of the data can be used to generate a look up table. Vora et all2 used this method

to verify their Kodak DCS-200 digital camera was linear over most of its operating range, and also

to develop a linearization curve for their Kodak DCS-420 digital camera. They then determined

R(k ) for those cameras by stimulating them with very narrow band illumination produced by a

monochrometer8. This method is conceptually very simple and can be very accurate. However, the

equipment required to produce sufficiently intense narrow band illumination at uniformly spaced
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wavelengths is expensive and not readily available. Hence various researchers have investigated

methods for characterization which do not use such equipment.

The general approach of these methods is to first measure F(k ) , and then to measure a number

of input spectra and the corresponding camera responses. Let r(k )  be a vector whose elements are

the linearized camera responses ρ(k ) , and let L be a matrix whose rows are the corresponding

sampled spectra. Then (2) becomes:

r(k ) = LR(k) (3)

Equation (3) can be solved by multiplying both sides by the pseudo-inverse of L. However, this

does not work very well because L is invariably rank-deficient. L is rank-deficient because we are

trying to determine R(k ) using easily obtainable input spectra, and these tend to be of relatively low

dimensionality. If L was of full rank, then we would have a method analogous to the

monochrometer method. The number of independent spectra needed for methods based on matrix

inversion is, of course, a function of the number of samples we wish to solve for. Wyszecki10

reported results using matrix inversion on a similar problem where the rank of L and the number of

samples were explicitly matched. In the more general case, where L is rank deficient, results based

on matrix inversion (or pseudo-inversion) are very sensitive to noise since it is mainly the noise

that is being fitted, and the resulting sensor responses tend to have numerous large spikes, and

have an abundance of non-negligible negative values (see Figure 3(a)).

Sharma and Trussell4,7 improved the prospects for a reasonable solution by introducing various

constraints on R(k ). First, instead of solving (3) exactly, they constrained the maximum allowable

error as well as the RMS error. In addition, they constrained a discrete approximation of the

second derivative to promote a smooth solution. Finally, they constrained the response functions to

be positive. They then observed that the constraint sets are all convex, and so they computed a

resulting constraint set using the method of projection onto convex sets.

Hubel et al.11 also recognized that some form of smoothness was necessary for a good

solution, and they investigated the Wiener estimation method, as described by Pratt and Mancill12,

as a method for finding a smooth fit. They found that the method gave generally good results.
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They note, however, that the method produced negative lobes in the response functions, and

mention briefly using the projection onto convex sets method to remedy this problem.

Sharma and Trussell’s contribution was the starting point for some of our own work on this

problem6. Rather than constrain the absolute RMS error, we chose instead to minimize the relative

RMS error. We then re-wrote Sharma and Trussell’s other constraints so that the entire problem

became a least squares fit with linear constraints for which there are standard numerical methods

readily available. Once we had a fit for our camera sensors, we noted that they were essentially

uni-modal, and that once the sensors dropped to a small value they remained small. On these

grounds we also constrained the sensors to be zero outside a certain range on subsequent runs. In

this particular case this forced the sensors response functions to be uni-modal. This last step needs

to be applied with care, as it is possible that the sensors are in fact non-zero beyond the points

where the main peaks drop to zero.

Recently Finlayson et al. used a similar approach13. They constrained smoothness by

restricting the sensors to be linear combinations of the first 9-15 Fourier basis functions. They also

introduced a modality constraint expressed in terms of the peak location and report results

constraining the sensors to be uni-modal and bi-modal. They determined the best fit for each

proposed modality by stepping through all possible peak locations. This method also requires care,

as the modality is often unknown. This method makes sense when used in conjunction with

Fourier smoothing, as that method can introduce spurious peaks. As part of this work we have

implemented the modality constraint and Fourier based smoothing.

THE CHARACTERIZATION APPROACH

We now describe our proposed characterization method in two stages. First, we will describe the

basic method which estimates the response vector for each channel R(k ) on the assumption that the

linearization function F(k )  has been found and applied. Second, we incorporate the estimation of

F(k )  into the fitting procedure. This has the advantage that the error in the two fits can be traded off

against each other, and data collected to find R(k ) can be exploited to estimate F(k )  more accurately.
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In initial work6 we minimized the relative RMS error in equation (3) subject to positivity

constraints, smoothness constraints, and a constraint on the maximum allowable error (and/or

relative error). We have since found that it is better to replace the constraint on smoothness with a

regularization term added to the objective function. Thus we minimize the relative error and the

non-smoothness measure together. This allows fitting error to be traded against non-smoothness

and vice versa. With the hard constraint used previously, there is no recourse in the case that

making the sensor response slightly less smooth at a particular location could substantially reduce

the error. Similarly, there is no recourse when a small increase in error beyond the hard limit could

substantially increase the smoothness. These observations also apply to the Fourier smoothing

approach.

We minimize the relative RMS error for two reasons. First, as discussed in more detail below,

the variance of the pixels values increases with their magnitude. And second, we have found that

minimizing relative error better reduces the error in chromaticity, which is difficult to minimize

directly, but is often of most interest. However, for some applications minimizing absolute error,

or even a weighted combination of both, may make more sense. We have also found that it is not

generally necessary to use Sharma and Trussell’s constraint on maximum allowable error to get

good results, but again, limiting either the absolute error or relative error may be called for in some

cases, and is easily added to the method as detailed below.

To investigate the nature of the error in our pixel values we made 100 consecutive

measurements of the Macbeth ColorChecker® illuminated at 10 different intensities. A pixel was

chosen for each of the 24 patches, and the mean and the variance was computed for each of the 240

pixel/intensity combinations over the 100 measurements. The means were linearized by the method

described later in this paper. The results for the red channel are plotted in Figure 1.

We consider the variance to be the sum of intensity dependent and intensity independent parts.

We further assume that the intensity dependent variance is due to photoelectron shot noise, and

thus is proportional to the mean14. Thus we expect that the observed variance to be linear with the

intensity with an offset characterizing the noise due to other sources. This is more or less
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consistent with the graph in Figure 1, but the spread of values indicate that this model is perhaps

overly simplified.

We now provide the details of the fitting procedure for the case where F(k )  has already been

found and applied to the data, beginning with the formulation which minimizes absolute error. Let

N be the number of spectral samples being used. First, we form the N-2 by N second derivative

matrix S:

S =

−1 2 −1

−1 2 −1

. . .

. . .

−1 2 −1

−1 2 −1 (4)

Then we solve

L

λS
R(k ) = r(k )

0 (5)
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in the least squares sense, subject to linear constraints. This is equivalent to minimizing the

objective function

L R S Ri
k

i
k

i
i

k

i

• −( ) + •( )∑ ∑( ) ( ) ( )ρ λ
2 2

(6)

with the first term expressing the error, and the second term expressing non-smoothness and thus

providing the regularization. The coefficient λ  specifies the relative weight attributed to the two

terms. If λ  is zero and there are no constraints, then this becomes the pseudo inverse method. A

serviceable value for λ  is easily found by trial and error. To ensure positivity, we use the

constraint:

R(k ) ≥ 0  (7)

To specify that the sensor response is zero outside the range [min, max] we can add the constraint:

Ri
(k ) ≤ 0   for i<min, i>max (8)

To specify that the absolute error is no more than a specified positive value, δ , we can add the

constraint:

ρ δ ρ δi
k

i
k

i
k( ) ( ) ( )− ≤ • ≤ +L R (9)

This condition was not used for any of the results in this paper, but may be interest, and can be

used to more closely emulate the method of Sharma and Trussell4,7.

To minimize the relative error we need to replace (6) by:
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2
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1 (10)

One way to express this is to use a modified version of L, Lrel , which is simply the rows of L

divided by the corresponding sensor response. Formally, Lrel  is given by:

L Lrel
kdiag= •−( ( ))( )r 1 (11)

We then replace (5) with:

Lrel k

Sλ
R

1

0
( ) = (12)
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Similar to the constraint (9), if we require a constraint limiting the relative error to less than a

positive amount ζ , we can use:

1 1− ≤ ≤ +ζ ζLrel
kR( ) (13)

where the inequalities are applied to each component of the vector Lrel
kR( ) . As with (9), this

constraint was not used for any results reported in this paper.

We note that minimizing the relative error may need to be modified slightly to deal with very

small ρ(k ) . Such data is likely to be inaccurate for a variety of reasons. Thus we need to either

ignore small values or give the corresponding data row less weight in the fitting process. Equation

(12) can be interpreted as a weighted version of equation (5), with the weighting being inversely

proportional to ρ(k ) . Thus it is natural and easy to put an upper bound on this weighting to

safeguard against small ρ(k )  when excluding them outright is not desired. These considerations are

not relevant for the experiments with real data reported below, as there was no data with small

values of ρ(k ) due to the relatively large response of our camera to no light (specifically (11.05,

13.06, 12.36)).

We now specify the constraints used to implement Finlayson et al.’s method13. They constrain

the modality of the sensor response functions which requires specifying the peak locations. In the

uni-modal case, we specify one peak at i(k)
max . Then we use the simple constraints:

Ri−1
(k ) ≤ Ri

(k )  for i i(k)≤ max  and Ri
(k ) ≥ Ri+1

(k )  for i i(k)≥ max (14)

The procedure for multiple peaks is similar. Of course, since the peak locations are not known, this

method requires trying all possible peak locations, and choosing the peak locations which give the

least error.

Finlayson et al.13 also propose ensuring smoothness by restricting the sensor response

functions to be linear combinations of Fourier basis functions. To implement this approach we

form a matrix B whose rows are the first D Fourier basis functions, with one period coinciding

with the wavelength range used. Then the sensor functions can be expressed as:

R( ) ( )ak kB= (15)
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where a( )k  are the Fourier coefficients. Finlayson et al. substitute (15) into all relevant equations,

and then use a( )k  as the unknowns in their quadratic programming problem. This has a small

advantage of reducing the size of the problem, and we use this method for the results on

synthesized data. Unfortunately, using the Fourier basis constraint in this form is problematic

when use in conjunction with the linearization fitting described shortly. Thus, in order to provide

results with linearization fitting, we use a different form of the constraint. Using the orthogonality

of the rows of B

a R( ) ( )k T kB= (16)

Then

R R(k) T (k)BB= (17)

And

(BB I)T (k)− =R 0 (18)

For the experiments on real data, we use (18) as equality constraints on the least squares

minimization problem. Alternatively, it is also possible to use (18) in place of the regularization

rows of (5) or (12). If (18) is used in this manner, then the adherence to the Fourier smoothing

constraint increases with increasing values of λ .

The methods developed so far assume that the function F(k )  has been found and applied as a

preliminary step. However, the body of data collected to find R( )k  also contains information about

F(k ) , and since this data set needs to be comprehensive, it makes sense to use it for the final

determination of F(k ) . Therefore we propose fitting R( )k  and F(k )  together. This has the advantage

that fitting errors due to F(k )  and R( )k  can be traded against each other. We first make a rough

estimate of F(k )  which we use to propose a parameterized expression for it. We then fit the

parameters for F(k )  and R( )k  simultaneously. We will now provide a specific example of such a

strategy.

The Sony DXC-930 camera which we used for our experiments is quite linear for most of its

range, provided it is used with gamma disabled. However, in all three channels it has a substantial
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response to no light (camera black) as well as a slight non-linearity for small pixel values. Due to

this non-linearity, a line fitted to the linear part does not intersect the response axis at the camera

black, and simply linearizing the camera by subtracting the camera black leads to errors in

chromaticity. Therefore the non-linearity must be taken into account, even if it is not explicitly

estimated. Figure 2 shows the slight non-linearity for the red channel. The other two channels are

similar.

The fit shown in Figure 2 was found using a simple linear fit (see (20) below) using pixel

values greater than 30. This illustrates the point that linearization information is available in the data

set which is to be used to find R( )k . To proceed with our strategy of explicitly fitting the non-

linearity, we need to parameterize it. The particular form of the parameterization is somewhat

arbitrary and will vary substantially from case to case. With a little experimentation we found that

the non-linearity of our camera could be approximated by:

F(k ) (x) = x − a0
(k ) − a1

(k )e−Ck (x−bk ) (19)

where bk  is the camera black for channel k, and Ck  is a constant which must be found by trial and

error, but was found to be quite stable. If we used the simpler form:

F(k ) (x) = x − a0
(k ) (20)
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then we would simply be fitting a camera offset simultaneously with R( )k . This would be a

reasonable approach for our camera if we did not wish to use smaller pixel values. In general, the

parameters of the approximation function must generate a reasonable collection of response

functions which roughly fit the non-linearity so that the overall fitting procedure can find a good

estimate of F(k ) (x). In addition, the parameters which are fitted must be linear coefficients. For

example, we can only directly fit for a0
(k )  and a1

(k ) ; Ck   must be found by trial and error.

To find the parameters for the approximation of F(k ) (x) simultaneously with R(k ) when fitting

for absolute error, we replace equation (5) with:

L 1 e−Ck (r (k) −bk )

λS 0 0
•

R(k )

a0
(k )

a1
(k )

= r(k )

0
(21)

where the arithmetic in the upper right block of the matrix is done element-wise as needed.

Similarly, in the case of fitting for relative error, we replace (12) with:

Lrel
1

r(k)
e−Ck (r(k ) −bk )

r(k)

λS 0 0

•
R(k)

a0
(k)

a1
(k)

=
1

0
(22)

where again, the arithmetic in the upper right block of the matrix is done element-wise as needed.

Note that the response vectors r(k )  now correspond to the observed camera responses υ (k )   in

equation (2), in contrast to the earlier formulation where r(k )  corresponded to the linearized camera

responses, ρ(k ) .

In all cases the entire fitting procedure is a least squares minimization problem with linear

constraints, or equivalently, it can be viewed as a quadratic programming problem. Such problems

can be solved with standard numerical techniques for which software is readily available. We use

the freely available SLATEC fortran library routine DLSEI . The routine DBOCLS in that library

may also be used. A third option is the Matlab routine “qp”.
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EXPERIMENTS WITH SYNTHETIC DATA

Experiments with synthetic data are useful because the sensor functions sought are known. For

these experiments, we used a linear camera model, with sensors similar to the real camera sensors

determined in the next section. Given the sensors, and the set of 598 input spectra used in the real

calibration experiment, we synthesized responses using (3). To all responses we added 5% relative

Gaussian noise. Under these conditions, it should be easy to obtain a relative fitting error of

roughly 5%. However, some methods, such as the pseudo-inverse method are expected to over-fit

the characteristics of the specific input data set. Thus a more interesting error measure is the

difference between the actual sensors and the computed ones. Since the actual sensors are relatively

smooth and non-negative, we expect methods which promote these characteristics to do better.

The results are shown in Table I, and the sensors obtained using a selection of the methods are

plotted together with the actual sensors in Figure 3. As predicted, the lowest fitting error is

obtained using the pseudo-inverse, as it is the least constrained method, but the resulting sensor

response functions are very poor. The results show that adding constraints for positivity and the

regularization equations for smoothness do not overly increase the fitting error, but significantly

reduce the error in the sensor response functions. The best match of the sensor response functions

was obtained by additionally using the range constraints, but it should be noted that human input

was used in deciding which the limits to use, and that this method will be of less use when the

nature of the sensors is more in question.

Fourier smoothing proved to be less effective that the simple regularization approach proposed

in this work. The results in Table I indicate that there is no choice of the number of basis function

which give results comparable to our approach. Fourier smoothing puts constraints on the sensor

functions which are not necessary for simple smoothness, and many good candidates for the

sensor response functions can not be considered. In contrast, the approach proposed in this work

allows the degree of smoothness to be traded against fitting error, which yields more flexible

fitting.
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Table I. Results of fitting experiments on generated data. The first error measure is the

relative error (RMS over the three sensor functions for the separate channels). This

error was minimized by the fitting process, and therefore the addition of constraints

always leads to an increase in error. The error measure in the second column is an

estimate of how well the fitting process estimated the actual sensor response functions

used to generate the data. The maximum value of this error measure is 1, which is very

nearly reached with the pseudo-inverse method.

Fitting Method Average of relative error
over the 3 sensor
response  functions
(percent)

RMS difference between
fitted sensor curve and
the target, normalized by
the maximum of the fit
and target norms,
averaged over the 3
sensors.

Pseudoinverse 4.158 0.9997

Pseudoinverse with positivity 4.756 0.8157

Pseudoinverse with positivity and modality 4.793 0.2412

Fitting with positivity and smoothing 4.812 0.0495

Fitting with positivity and smoothing and range 4.820 0.0424

Fitting with positivity and smoothing and modality 4.815 0.0520

11 Fourier basis functions with positivity 8.445 0.1826

13 Fourier basis functions with positivity 5.788 0.1303

15 Fourier basis functions with positivity 5.160 0.1172

18 Fourier basis functions with positivity 5.021 0.1056

21 Fourier basis functions with positivity 4.876 0.0712

25 Fourier basis functions with positivity 4.821 0.0923

31 Fourier basis functions with positivity 4.807 0.0921

39 Fourier basis functions with positivity 4.796 0.2357

11 Fourier basis functions with positivity and modality 25.558 0.3967

13 Fourier basis functions with positivity and modality 17.063 0.2835

15 Fourier basis functions with positivity and modality 10.137 0.1938

18 Fourier basis functions with positivity and modality 5.973 0.1514

21 Fourier basis functions with positivity and modality 5.193 0.1413

25 Fourier basis functions with positivity and modality 5.000 0.0911

31 Fourier basis functions with positivity and modality 4.868 0.1019

39 Fourier basis functions with positivity and modality 4.814 0.0982

50 Fourier basis functions with positivity and modality 4.804 0.1030

75 Fourier basis functions with positivity and modality 4.798 0.1367

100 Fourier basis functions with positivity and modality 4.793 0.2280
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FIG. 3. The results of various fitting methods on synthetic data. The data was

generated from idealized sensors based on the actual sensors of our Sony DXC-930

camera. 5% relative Gaussian noise was added.
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FIG. 3 (Continued). The results of various fitting methods which promote smooth

results by constraining the solution to be a linear combination of a specified number

of Fourier basis functions.
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EXPERIMENTS WITH REAL DATA

We investigated camera characterization for a Sony DXC-930 3 chip CCD camera. In order to

obtain a comprehensive set of calibration data we automated the collection of input energy spectra

and the corresponding camera responses. Our target was a Macbeth ColorChecker® which has 24

different colored patches which we illuminated with a number of illuminant/filter combinations.

The black patch of the chart was not used because it did not reflect enough light with the darker

illuminants for reliable spectroradiometer measurements. The main criterion of the apparatus was to

ensure that the camera and the spectroradiometer measured the same signal. We also required that

the camera data was always for center of the image. Therefore we mounted the color checker

horizontally on an XY table which moved it under computer control. The camera and the

spectroradiometer were mounted on the same tripod, with their common height controlled with the

tripod head height adjustment mechanism. Rather than aim them simultaneously at the target, we

decided instead to set the optical axes to be parallel. This meant that the tripod head had to be raised

and lowered between capturing camera data and spectroradiometer data. Thus we captured an entire

chart worth of camera data before capturing an entire chart worth of spectra. A total of 26

illuminant/filter combinations were used in conjunction with the 23 patches, providing 598

measurements (available on-line3). For all fitting experiments we excluded response values

exceeding 240.

We took additional steps to obtain clean data. As indicated above, it is important that the camera

and the spectroradiometer are exposed to the same signal. To minimize the effect of misalignment,

we made the illumination as uniform as possible. To reduce the effect of flare, the target was

imaged through a hole in a black piece of cardboard, exposing the region of interest, but as little

else as was practical. We extracted a 30 by 30 window from the image which corresponded as

closely as possible to the area used by the spectroradiometer. The 8 bit RGB values of the pixels in

this window were averaged. Finally, the camera measurements were averaged over 50 frames to
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further reduce the effect of photon shot noise, and the spectroradiometer measurements were

averaged over 20 capture cycles.

We considered three approaches to linearization. The most naive method is to simply subtract

the camera black from the data, but otherwise assume the data is linear. The second method makes

the assumption that the camera is linear except at the two extremes. Thus we make the intercept of

the linear fit a parameter of the fitting process (as in (20)). Due to the curvature evident in Figure 2,

this method results in the subtraction of an offset which is somewhat less than the camera black

used in the first approach. Finally we provide the results of parameterizing the non-linearity as

developed above.

Each linearization method was used in conjunction with a number of methods for fitting the

camera response functions. The results are compiled in Table II. All results in this table are based

on minimizing the relative error. The regularization smoothing parameter, λ , was initially set by

trial and error to a value which gave reasonably smooth sensor functions. We did not attempt to

tune λ  beyond a factor of two, and we used the same value for all variants. For the Fourier

smoothing method we provide results for a wide range of choices for the number of basis

functions.

The results in Table II show that for our camera, fitting for the linearity in conjunction with the

sensor functions substantially reduces error compared to both subtraction of camera offset and

fitting for the intercept. Although we expected some benefit, the extent of the improvement was

beyond what we expected, as our camera is actually quite linear.

In Table III we compare fitting based on absolute error with fitting based on relative error for

one of the methods. Not surprisingly, when the data was fit using relative error, the relative error

was lower, and the absolute error higher, than when the data was fit using absolute error. More

significantly, fitting with relative error substantially reduced the absolute error in (r,g) chromaticity

which is difficult to minimize directly, and is key for many applications. Table III also includes

L*a*b error for the two objective functions.
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Unlike the synthetic case, the true camera sensor functions are not known. Thus in order to

investigate the robustness of the fitting methods we determined the camera model using subsets of

the data, and computed how well the sensor responses for the entire data set was predicted. We

used subsets of sizes 400, 200, 100, 50, 25, and 12, as well as the full data set (598 data points).

We averaged the results over 100 random selections of the above subset sizes. Each data subset

was augmented with the data for no light. Each fitting method was used in conjunction with the

linearization method developed above. In this experiment we restricted our attention to 21 basis

functions for the Fourier smoothing method. Figure 4 shows the results for each fitting method

plotted against the number of data sample points on a log scale. Figure 5 shows the sensor

response functions corresponding to each of these methods when all the data was used.

When the full data set was used for fitting, adding constraints invariably increased the error, as

expected. However, as the number of points used for fitting decreased, the more constrained

methods proved to be more robust. This was best illustrated by the pseudo-inverse method. It had

the least error when fitted using the entire data set (which is exactly the test data set), but its

performance deteriorated very rapidly when its parameters were determined using smaller and

smaller subsets of the data. Adding positivity led to a big improvement in robustness to all the

methods (for simplicity only the pseudo-inverse method is shown without positivity). As the

number of points in the subset became very small, the uni-modality constraint becomes

increasingly useful. Of course, a small data set could not be used to determine with confidence that

sensors are in fact uni-modal. Interestingly, the pseudo-inverse method with positivity and uni-

modality gives surprisingly low error, even though Figure 5 and the synthetic experiments suggest

that the corresponding sensors are not likely to be close to the real sensors. This result reflects the

relatively low dimensionality of the input spectra relative to the 101 samples provided by the

spectroradiometer. The constraint on the range of the sensors also adds robustness as evaluated by

the deterioration in performance when the sample size is small. However, as in the case of the

modality constraint, when the amount of data is small, it is hard to be confident in the range, and

therefore it can only be used if it is already available.
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TABLE II. Results of fitting experiments on data captured as explained in the text. Each

linear based fitting method was used in conjunction of three different linearity fitting

methods.

Linear Fitting Method Relative RGB
error with
linearity fitting
limited to
subtraction of
camera black

Relative RGB
error with
fitting of
camera linearity
intercept

Relative RGB
error with full
linearity fitting

Pseudoinverse 0.0262 0.0240 0.0095

Pseudoinverse with positivity 0.0427 0.0303 0.0107

Pseudoinverse with positivity and modality 0.0434 0.0309 0.0115

Fitting with positivity and smoothing 0.0448 0.0316 0.0117

Fitting with positivity, smoothing and range 0.0448 0.0322 0.0146

Fitting with positivity, smoothing, and modality 0.0447 0.0317 0.0123

11 Fourier bases with positivity 0.1069 0.0720 0.0606

13 Fourier bases with positivity 0.0699 0.0443 0.0297

15 Fourier bases with positivity 0.0560 0.0360 0.0189

18 Fourier bases with positivity 0.0490 0.0335 0.0166

21 Fourier bases with positivity 0.0473 0.0324 0.0137

25 Fourier bases with positivity 0.0458 0.0317 0.0120

31 Fourier bases with positivity 0.0447 0.0312 0.0116

39 Fourier bases with positivity 0.0439 0.0309 0.0112

11 Fourier bases with positivity and modality 0.2626 0.2402 0.5775

13 Fourier bases with positivity and modality 0.1878 0.1586 0.4253

15 Fourier bases with positivity and modality 0.1215 0.0907 0.0806

18 Fourier bases with positivity and modality 0.0675 0.0458 0.0315

21 Fourier bases with positivity and modality 0.0497 0.0344 0.0196

25 Fourier bases with positivity and modality 0.0474 0.0333 0.0168

31 Fourier bases with positivity and modality 0.0454 0.0320 0.0138

39 Fourier bases with positivity and modality 0.0449 0.0315 0.0123

TABLE III. A comparison of fitting based on relative error with fitting based on absolute

error for one of the preferred methods (positivity, smoothing, and uni-modality).

Linearization is fitted simultaneously with the sensor response functions as in the third

column of Table II.

Error minimized RMS relative
RGB error

RMS absolute
RGB error

RMS absolute
error in
r=R/(R+G+B)

RMS absolute
error in
g=G/(R+G+B)

RMS L*a*b
error

Absolute 0.0141 0.79 0.0052 0.0056 0.303

Relative 0.0123 0.89 0.0027 0.0044 0.285
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FIG. 5.  Sensor response functions found using a variety of fitting for the data

collected as described in the text. All methods were used in conjunction with linearity

fitting. These sensors correspond to the results in Figure 4 when for the full sample

size of 598 points.
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CONCLUSIONS

We have developed and tested a new method for fitting a common camera model used in color

research. By promoting smoothness, and using constraints on the sensor response functions such

as positivity, we obtain a result which is both reasonable and robust. We have found that it is best

to promote smoothness by adding a regularization term to the minimization expression rather than

constraining it, as has been done in earlier work by others and ourselves. We have also

investigated fitting a small non-linearity in the camera response simultaneously with the sensor

response functions. This is effective because errors due to the lack of fit of the two model parts can

be traded against each other for a better overall characterization. This approach also takes advantage

of the linearization information inherent in the data required to determine the sensitivity functions.

Finally, our experiments support the hypothesis that it can be preferable to minimize the relative

error, especially if chromaticity accuracy is more important than overall accuracy.
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