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Abstract

Color is of interest to those working in computer vision
largely because it is assumed to be helpful for recognition.
This assumption has driven much work in color based image
indexing, and computational color constancy. However, in
many ways, indexing is a poor model for recognition. In
this paper we use a recently developed statistical model of
recognition which learns to link image region features with
words, based on a large unstructured data set. The system is
general in that it learns what is recognizable  given the data.
It also supports a principled testing paradigm which we
exploit here to evaluate the use of color. In particular, we
look at color space choice, degradation due to illumination
change, and dealing with this degradation. We evaluate two
general approaches to dealing with this color constancy
problem. Specifically we address whether it is better to build
color variation due to illumination into a recognition
system, or, instead, apply color constancy preprocessing to
images before they are processed by the recognition system.

Introduction

Color is of interest to those working in computer vision
largely because it is assumed to be helpful for recognition.
Color has been studied in detail for specific recognition tasks
such as skin1-3.  Color is also possibly the most useful of
the features typically used in content based image retrieval
(CBIR) systems4-7. In these systems the usual task is to find
images in a database which are similar in appearance to a
query image. There has also been much written about the
similar endeavor of image indexing as suggestive of object
recognition8-13. This body of work is similar to CBIR in that
an exemplar image is used for querying, but here the query
image generally is thought to come from a database of
single objects, typically on a controlled background which is
easily removed by pre-processing.

 Conceptually, images which are examined for the
presence of the object might contain it amid clutter.
However, since the indexing paradigm makes queries based
on the properties of an entire image, finding the object
among clutter requires searching over image windows. These

considerations are usually deferred,  and most work has been
simply searching for “object images”.  Thus in practice,
indexing is only suggestive of object recognition.

Even if clutter is dealt with, there are still other key
difficulties. First, while this form of recognition might be
able to find a particular, known, multi-colored ball, it does
nothing to help find a different multi-colored ball. More to
the point, because there is no notion in the training set that
these objects are of the same class, there is no way to learn
the variance of the colors to be expected in the world of
multicolored balls, nor to bootstrap the learning of shape
which is essential for a general theory of recognition.

A second problem surfaces when one tries to deal with
illumination change. When objects and scenes are imaged
under different lights their colors can change dramatically.
This presents problems for color based indexing and
recognition systems in general, and is a large part of the
motivation for the large research effort on computational
color constancy. In the case of indexing, the strategy is
usually some form of normalization9,11,12, where the database
of object images which is searched is normalized for
illumination change in a pre-processing step. The same
normalization is applied to the object image or window
thereof to be matched. For example, with the gray-world
method, we assume that the average of any scene is a
specific color (“gray”) and deviations from that statistic are
due to illumination effects. Assuming the diagonal model of
illumination change14-17, image colors are then scaled
independently so that the overall image is the specific gray.
Notice that even if the process does not determine the actual
illumination change, it can still work for indexing. The key
point is that images are mapped into a different space where
they can be matched regardless of whether there is a
difference in their imaging conditions.

The problem with normalization is that in order to deal
with the illumination variation, useful information is
discarded . For example, consider uni-colored objects. Grey
world normalization maps them all into the same
representations. Thus the system cannot distinguish between
a blue ball and a white one. Nonetheless, for multi-colored
objects the method can be effective because as the number of
colors increases, the space of possibilities increases rapidly



because these methods typically take into account the
relative amounts (histogram) of each color.

One alternative is to assume that the objects in the
reference dataset are all imaged under the same (canonical)
illumination. Color constancy processing is then applied to
the image under consideration, but not to any sub-windows
tested for the object. If the image is only of a single  object
(typical in research in this topic), then the situation is not
much different than the previous case. However, if the image
is a more complex scene (typical in many applications),
then color constancy assumptions are likely to hold, and
looking for the object in sub-windows might work. In this
scenario, it is thus possible to distinguish a blue object
from a white one, despite illumination change.

A second alternative18-21 is to represent the range of
colors possible under expected illumination changes for the
objects of interest in the recognition system. This suggests
a question we address below. Specifically, is it better to
build color variation due to illumination into a recognition
system, or to apply color constancy preprocessing to images
before they are considered by the recognition system.

In what follows we will review a recently developed
model for recognition, and then use the performance of that
model to quantify the effects of color spaces for recognition.
Next we will consider how the performance of the system
degrades with color variation. Then we will evaluate the two
strategies for dealing with the degradation: simple color
constancy pre-processing, and exposing the training of the
model to illumination variation.

Object Recognition as Translation

We adopt a model of object recognition where words must
be placed on image regions22-24, illustrated in Figure 1. This
is achieved in practice by exploiting large image data sets
with associated text. Critically, we do not require that the
text be associated with the image regions, as such data is
rare. Considering processes which translate from images
(visual representation) to words (semantics) gives a handle
on a number of difficult computer vision problems. In part,
this is because translation performance can be measured on a
large scale, by comparing the proposed translation (predicted
words) with the actual translation (associated text). In this
work, we use word prediction performance to evaluate the
efficacy of color spaces for recognition, as well as the two
strategies discussed above for handling illumination
variation.

A number of methods have recently been described for
predicting words from segmented images22-25. For the results
reported in this paper we use a special case of one of these.
Specifically, we model the joint probability of words and
image regions as being generated by a collection of nodes,
each of which has a probability distribution over both words
and regions. The word probabilities are provided by simple
frequency tables, and the region probability distributions are
Gaussians over feature vectors. We restrict the Gaussians to
have diagonal covariance.

Given an image region, its features imply a probability
of being generated from each node. These probabilities are
then used to weight the nodes for word emission. Thus
words are emitted conditioned on image regions. In order to
emit words for an entire image (auto-annotation), we simply
sum the distributions for the N largest regions. Thus each
region is given equal weight, and the image words are forced
to be generated through region labeling.

To be consistent with the more general models refer-
enced above, we index the nodes by “levels”, l. Given a
region (“blob”),  b, and a word w, we have

† 

P(w | b) = P(w | l)P(b | l)P(l ) P(b)
l

Â (1)

where P(l) is the level prior, P(w|l) is a frequency table, and
P(b|l) is a multivariate Gaussian over region features. To
estimate the conditional density of words given blobs for the
entire image these probabilities are summed over the N
largest blobs. In the experiments reported in this paper, N
was 8.

The parameters of the model are estimated from the
word-blob co-occurrence data using Expectation Maximiza-
tion26. In particular, we learn the level priors, P(l), the
frequency tables for each level, P(w|l), and the means and the
variances of the multivariate Gaussians for computing
P(b|l). For all experiments reported in this paper we used
500 nodes.

Experimental Protocol

We used images from 160 CD's from the Corel image data
set. Each CD has 100 images on one relatively specific
topic such as "aircraft". From the 160 CD's we drew
samples of 80 CD’s, and these sets were further divided up
into training (75%) and test (25%) sets. The images from
the remaining CD’s formed a more difficult “novel” held out
set. Predicting words for these images is difficult, as we can
only reasonably expect success on quite generic regions such
as “sky” and “water”—everything else is noise.

Each such sample was given to each process under

Figure 1. Illustration of labeling. Each region is labeled
with the maximally probable word, but a probability
distribution over all words is available for each region.



consideration, and evaluated on the basis of at least 1000
images. The results of 10 such samples were further
averaged. This controls for both the input data and EM
initialization. Words occurring less than 20 times in the
training set were excluded. The number of words in the
vocabulary varied from 153 to 174 over the 10 runs.

Images were segmented using Normalized Cuts27. We
used a modest selection of features for each region, including
size, position, average region color, standard deviation of
color over the region, average oriented energy (12 filters),
average differential response of 2 different Gaussian filters,
and a few simple shape features. The features were chosen to
be consistent with recent work on linking words with
images23-25, where we purposely chose to represent color
redundantly by (R,G,B), (r,g,S) defined by S=R+G+B,
r=R/S, and g=G/S, and L*a*b. In the color space evaluation,
we restrict the color features to be from only one of these
choices. We normalize all features so that in the training
data each has mean zero and variance one.

Varying the illumination . Unfortunately, appropri-
ate large scale data sets with controlled illumination
variation are not available. As a compromise, we constructed
a semi-synthetic data set as follows. We began with a
comprehensive controlled illumination data set28,29. This data
set was constructed to be representative of the changes in
illumination chromaticity generally encountered.  We scaled
each pixel in those images so that the overall brightness,
R+G+B was the same. We then computed the best, in the
least squares sense, 3 by 3 matrices mapping the images
under each of the 11 illuminants to one chosen canonical
illuminant (Sylvania 50MR16Q). (One of these matrices  is
the identity). We then used these 11 matrices to simulate
illumination changes in the Corel data set. For each image,
we removed the gamma correction, scaled the overall
brightness of each pixels so that all R+G+B were the same,
applied one of the 11 matrices to the (R,G,B), and then re-
scaled the (R,G,B) so that it was set to the same value in the
original image. We then computed images features for the
images based on the new (R,G,B) values. This process
produced  some (R,G,B) values which were above the usual
maximum value of 255. When color constancy processing
was applied to such images values over 255 were made
available to that process, all pixel values were truncated to
255 before being used for recognition experiments.

Our simulation of illumination change is only a gross
approximation of what would occur if the illumination
striking the scene underwent analogous changes. For
example, the process makes no sense for sources, such as
the sky. However, the procedure is more justified if we think
of the “scenes” as being prints of the images, not the scenes
themselves. The key point is that we want to capture the
distribution of colors in a real data set which is also
appropriate for large scale recognition experiments.

Performance measures. Several ways to quantify
word prediction performance have been proposed24. Here we
use the simplest measure. Specifically, we allow the model
to predict M words, where M is the number of words

available for the given test image. In our data M varies from
1 to 5. The number correct divided by M is the score.

We express word prediction relative to that for the
empirical word distribution—i.e., the frequency table for the
words in the training set. This reduces variance due to varied
test sample difficulty. Exceeding the empirical density
performance is required to demonstrate non-trivial learning.
Doing substantially better than this on the Corel data is
difficult. The annotators typically provide several common
words (e.g. “sky”, “water”, “people”), and fewer less
common words (e.g. “tiger”). This means that annotating all
images with, say, “sky”, “water”, and “people” is quite a
successful strategy. Performance using the empirical word
frequency would be reduced if the empirical density was
flatter. Thus for this data set, the increment of performance
over the empirical density is a sensible indicator.

Color Space Evaluation

Color space choice is often difficult. Clearly, the choice
should reflect the application. One issue is the degree to
which the three values are correlated.  For example, in
natural images, R, G, and B, tend to be quite correlated
because variation in illumination intensity and direction
(shading) tend to effect the three channels similarly. (r,g,S),
where S=R+G+B, r=R/S, and g=G/S is less correlated. R,
G, and B can be further decorrelated using PCA and ICA.

A second issue is the degree to which the color space
aligns with human perception. In computer vision, L*a*b is
often used where the connection to human vision is weak.
However, one could make a generic argument that the
human vision system has evolved to accomplish tasks like
the ones we are interested in, and that emulating it where
possible makes sense.

Since we have taken care to develop a comprehensive test
strategy, we can evaluate which color space is best for our
approach. Further, since our system focuses on the canonical
computer vision task—linking image features with
semantics—it is likely that our findings apply to other
systems as well.

We consider adding color as encoded in three different
ways—straight RGB, L*a*b, and chromaticity with
brightness, specifically, S=R+G+B, r=R/S, and g=G/S, in
addition to using them all as in the original work23-25. In all
cases we used both the average color and its variance over
the region, and we kept the number of features the same by
duplicating the chosen color features appropriately. Word
prediction performance using each color space is reported in
Table 1.

We found that using either L*a*b or (r,g,S) is substan-
tially better than using straight RGB. The difference between
using L*a*b and (r,g,S) was negligible. These results
suggest that for our task, it is helpful to decorrelate
brightness and chromaticity, but beyond this step, color
space may not be very important.



The Effect of Illumination Variation

To investigate the effects of illumination variation on our
recognition system, we trained the models using images
from the original Corel images, but tested on the images
which had a simulated illumination change set by any of the
11 possible ones in roughly equal proportions.  

The results  (Table 2, row 2) show that for this applica-
tion, the range of illumination expected in natural images
causes substantial degradation in performance. This is
expected as color is an important cue for our system.

Training with Illumination Variation

Studying incorporating illumination variation into the
training of the recognition system leads to an important
design choice. It could be argued that the training set should
consist of every training image from the previous
experiment, but under each of the 11 illuminants, making
the training set 11 times large. However, we would likely
now require a larger model. Thus to avoid this confound, and
to match the processing costs and model size with the other
experiments, we trained the models on exactly the same
number of images as before, and each image was subjected
to one of the 11 illumination changes. Each of the 11
illumination changes received roughly equal representation.
This should not be an overly large burden, as the system
learns from multiple examples—and now it simply sees
more color variation in those examples. Recall from (1) that
the variance of the feature is part of what is learnt by the
system.

The results  (Table 2, row 3) show that exposing the
training process to the expected illumination variation is
helpful, reducing the negative effect of varying illumination
by about 40% in the case of first held out set, and 60% in
the novel held out set.

Color Constancy Pre-Processing

As discussed in the introduction, the obvious, and often
assumed solution to the illumination variation problem in
object recognition is color constancy pre-processing. For
this work we test this idea with the two simple color
constancy methods: gray-world (GW) and scale-by-max
(SBM). Many better methods exist (see, for example 16,30-37),
but here we are more interested in first establishing whether
color constancy processing helps at all. For the gray world
method we computed the appropriate expected value of the
average (R,G,B) over all 34,000 Corel images. (For this data
set, gray is (52.9, 51.0, 43.0)). We then removed the color
cast from the images by assuming that the average (R,G,B)
for each image was gray, and that the diagonal model was
valid. For the Corel images, the diagonal model is not likely
to be particularly good, but for our simulation experiments
where the modeled illumination change was set to emulate
the SFU data, the diagonal model is reasonably accurate.
However, we purposely allowed for some variation from the

diagonal model by using the 3 by 3 linear transformations
on chromaticity only to create the data set.

For the scale-by-max method, we simple scale each
channel so that the maximum in the images is that observed
in the entire dataset, which, for the Corel data set, is not
surprisingly 255 for each channel.

The results  (Table 2, rows 4 and 5) show that the scale-
by-max normalization is very helpful, whereas the gray-
world normalization is not. An examination of the images
reveals that the color balance of many or most of them is
consistent with the maximum in each channel being close to
255. There are obvious exceptions, such as the entire CD of
sunsets, but each CD makes up less than 1% of our data. By
contrast, the gray world assumption is not particularly valid
for this data set, and attempting to deal with illumination
change by exploiting it did not yield good results.

Color Normalization

In our final experiment, we applied the same normalization,
either GW or SBM, to the training data as well as the test
data. This scenario is thus similar to the indexing paradigm
discussed in the introduction. There we argued that indexing
may not make sense if the reference data set is simple
objects, because normalization removes too many degrees of
freedom.

Notice, however, that in our approach, we are neither
using the training images as objects to be recognized, nor
images to be found. Rather we are using them to learn about
image regions from images which typically have a wide
range of colors. Thus training in a normalized space might
make sense if illumination variation is expected and this is
what is suggested by the results. Using this strategy
improves upon that possible using color constancy
processing for the test images only. In the case of SBM, the
absolute improvement is small because the result obtained
without normalizing the training set was already good. In
the case of grey world normalization, the improvement was
substantial. This makes sense because it in effect alters the
data so that the gray world assumption is more valid.
However, the performance is still below that of using scale-
by-max both with and without extending the normalization
to the test data.

Table 1. Word prediction performance for the
most common color spaces in computer v i s i on .
The numbers are amount by which word
prediction exceeds that of using the empirical
distribution (bigger is better).

Word prediction performance on
the various data sets (error is
roughly 0.003)Feature set

Training Held out Novel

RGB, L*a*b, and rgS 0.140 0.090 0.055
RGB 0.112 0.064 0.044
L*a*b 0.148     0.096 0.059
rgS 0.149 0.094 0.060



Conclusion

We posit that our system for translating image regions to
words is more representative of the general object
recognition problem than the often used indexing task, and
thus it is a good platform to study the use of color for object
recognition. Using this platform we have confirmed the
notion that illumination variation can pose problems for
object recognition systems, and have looked at several
classes of approaches for dealing with it.

In our somewhat artificial dataset, conditions were good
for the scale by max algorithm, and using it gave results
approaching that where there was no color constancy
problem. This is encouraging, because, as argued in the
introduction, color constancy is required when objects to be
identified have limited color ranges. In this case, simple
normalization does not work. When normalization is
appropriate,  as was the case in our artificial test setting, our
results gave a small improvement in conjunction with scale
by max, and a large improvement in conjunction with the
gray world method. However, the performance with the grey
world method was still less then the scale by max method,
without normalization.
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