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Abstract

We introduce using images for word sense disambiguation, either alone, or in con-
junction with traditional text based methods. The approach is based on a recently
developed method for automatically annotating images by using a statistical model
for the joint probability for image regions and words. The model itself is learned
from a data base of images with associated text. To use the model for word sense
disambiguation, we constrain the predicted words to be possible senses for the word
under consideration. When word prediction is constrained to a narrow set of choices
(such as possible senses), it can be quite reliable. We report on experiments using
the resulting sense probabilities as is, as well as augmenting a state of the art text
based word sense disambiguation algorithm. In order to evaluate our approach, we
developed a new corpus, ImCor, which consists of a substantive portion of the Corel
image data set associated with disambiguated text drawn from the SemCor corpus.
Our experiments using this corpus suggest that visual information can be very use-
ful in disambiguating word senses. It also illustrates that associated non-textual
information such as image data can help ground language meaning.

Key words: Word Sense Disambiguation; Computer Vision; Image Semantics;
Statistical Models; ImCor; SemCor




piggy bank coins currency water grass trees banks
money

bank machine money
currency bills

bank buildings trees city

snow banks hills winter

Fig. 1. Five senses of bank, illustrated using using images from the Corel dataset.

1 Introduction

A significant portion of words in natural language have a number of possible
meanings (senses), depending on context. This is illustrated in Figure 1 with
the arguably overused “bank” example. A priori, the word “bank” has a num-
ber of meanings including financial institution and a step or edge as in “snow
bank” or “river bank”. Words which are spelled the same but have different
meanings (polysemes) confuse attempts to automatically attach meaning to
language. As there are many such ambiguous words in natural language texts,
word sense disambiguation — determining the exact sense of words — has
been identified as an important component of natural language processing,
and has been studied by many researchers leading to a large body of litera-
ture [4,32,51,50,27,3,2,40,41,48].

Since the words are spelled the same, resolving what they mean requires a
consideration of context. A purely natural language based approach considers
words near the one in question. Thus in the bank example, words like “finan-
cial” or “money” are strong hints that the financial institution sense is meant.
Interestingly, despite much work, and a number of innovative ideas, doing
significantly better than choosing the most common sense remains difficult
[48].



In this paper we develop a method for using image information to disambiguate
the senses of words. We posit that image information can be an orthogonal
source of information for distinguishing senses. In the extreme case, disam-
biguation using nearby text alone is impossible as in the sentence: “He ate
his lunch down by the bank.” In such cases, alternative sources of information
offer attractive possibilities for grounding the word meanings. Even when not
essential, non-textual information has the capacity to be helpful. Our method
for using associated visual information can be used alone, or in conjunction
with text based methods. Naturally, when no images are available, the sys-
tem must fall back on non-image methods. Incorporation of computer vision
into the word sense disambiguation process is a novel approach. As far as we
know, all other word sense disambiguation methods use document text and/or
additional text carrying domain or document context semantic information.
However, we acknowledge related work using WordNet [42] to propagate sense
(and thus semantic) information between feature based classes in the context
of multimedia information systems [13,12].

To use image information we exploit a recently developed method for predict-
ing likely words for images [9,22,5]. The method is based on a statistical model
for the joint probability distribution of words and image region features. The
model is learned from a training set of images with associated text. Additional
details are provided below (Section 3).

To use the model for word sense disambiguation, we constrain the predicted
words to be from the set of senses for the word under consideration. In general,
when word prediction is constrained to a narrow set of choices (such as possible
senses), it can be quite reliable. We report on experiments using the resulting
sense probabilities as is, as well as augmenting two state of the art text based
word sense disambiguation algorithms.

In order to evaluate our approach, it was necessary to develop a new corpus,
ImCor, which consists of a substantive portion of the Corel image data base
associated with disambiguated text drawn from the SemCor corpus. (We have
made ImCor available for research purposes [31]). Our experiments using this
corpus suggest that visual information can be very useful for disambiguating
word senses.

This work suggests approaches to exploiting multiple data modes to increase
our ability to automatically search and browse multi-media information. For
example, text data on the web is often augmented with image data. Searches
based on text currently do not make use of that information, even though
in many cases it would be helpful. While computational methods for effec-
tively understanding arbitrary visual data are still a long way off, using visual
features to improve the rankings of query results may not require such a full
understanding. For example, if text data can be better sense disambiguated by



using image data, then an unambiguous query can be better executed against
this data.

2 Disambiguating Words using Textual Content

Research into automatic methods for disambiguating word senses has resulted
in a variety of ways of using the surrounding text, or the “textual context”, to
infer word sense. Disambiguating sense is a semantic problem, and the under-
lying assumption is that the word to be disambiguated is semantically linked
to the nearby words, as text tends to be semantically coherent. Co-occurrence
statistics will reflect semantic linking, and thus researchers have developed
methods based on statistical models for senses [16]. A large number of other
methods attempt to quantify this linking using known word semantics. For ex-
ample, word classes, as defined by a Thesaurus, can be integrated into a com-
bined weight of indicators in the textual context [49]. Going further, most word
sense disambiguation algorithms use a semantic network such as WordNet [42].
WordNet is a machine-readable dictionary covering a large proportion of the
English language (152,059 words) organized into 115,424 sets of synonyms
(synsets). It provides relationships between the sets, the most commonly used
one being the hypernym (“is a”) relationship. The graph created by hypernym
relationships forms a tree in which every node is a hypernym of its children.
The path connecting two words can be used to define semantic distances,
which has been used in word sense disambiguation algorithms [2,35,20,41].

Usage statistics are also helpful for word sense disambiguation. In WordNet,
the “sense number” roughly corresponds to decreasing common usage fre-
quency (the first WordNet sense is that which it considers to be most com-
monly used). Going further, researchers have exploited the SemCor sense-
attributed corpus [41,47,28,43]. SemCor, short for the WordNet Semantic Con-
cordance [26], consists of 25% of the Brown corpus [25] files which have been
fully tagged with part-of-speech and is sense disambiguated.

A number of word sense disambiguation methods have been compared at the
three Senseval conferences [33,23,1]. Based on the results from the second
Senseval we chose to implement an algorithm based on iterative word sense
disambiguation, SMUaw [41]. We were also intrigued by the fact that choosing
the most common sense according to WordNet evaluates higher than many of
the algorithms currently in use [48]. Thus we also implemented an algorithm
which provides a usage distribution over the senses to provide additional eval-
uation of our algorithm [36].

There has been some work done incorporating multiple alternative knowledge
sources to help disambiguate words in context. In [19], “world knowledge”



derived from alternative synset contexts obtained through WordNet was used
to supplement a learning algorithm and showed marked improvement over the
unaided version. Another interesting example is found in [44], where, for every
word being disambiguated, a feature set is formed based on multiple sources,
including the part of speech of neighboring words, morphological form, the un-
ordered set of neighboring words, local collocations and verb-object syntactic
relation. During training, disambiguated sentences were mined for features, so
that during testing, a feature set obtained for a word can be compared against
many training sets. The proposal is that the similarity so found is directly pro-
portional to the probability that the sense of the word in a training set is the
correct sense for the test word. While this system relied on the surrounding
text to obtain the feature set during testing, training data could have poten-
tially come from a number of different sources. This and other similar efforts
[37,11] indicate that intelligent and efficient integration of multiple knowledge
sources can result in enhanced performance of a variety of algorithms dealing
with textual analysis in general, and word sense disambiguation in particular.

3 Predicting Words from Images

To integrate image information with text data we exploit recent work on link-
ing images and words [9,22,5]. The general approach is to build statistical
models for the co-occurrence of image regions and words. A key assumption
is that words are linked to images via regions. These models can be used
to predict words for image regions (region-labeling) as well as entire images
(auto- annotation). Region labeling is illustrated in Figure 2. To label regions,
probabilistic inference using these models provides a posterior probability dis-
tribution over the vocabulary for each region, and we label the region with
the one which has maximal probability. We fit the models using large image
data sets with associated text. Critically, we do not require that words in the
training data be identified as belonging to particular image regions, as such
data is rare.

These models owe much to previous work in the text domain [29] and statistical
machine translation [14,15,38]. A number of additional methods for linking
image features to words have been recently proposed [17,30,24,34], and these
could also be considered for word sense disambiguation. For this work we use
one of the models from [5]. In particular, we use the dependent model, D-2,
with linear topology. We do not use the hierarchical clustering version as it is
better suited characterizing a known data set, and less suited for predicting
words for novel images.

We first segment images into regions which have coherent color and texture.
This simplification is essentially a data reduction step allowing semantic anal-
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Fig. 2. Illustration of region labeling. Each region is labeled with the maximally
probable word, but has a distribution over the entire vocabulary. In the word sense
disambiguation task we combine the probability distributions over the regions to
provide an “annotation” relevant to the entire an image. We emphasize region based
approaches here because we believe that good image annotation requires reasoning
about image components.

ysis to be done on groups of pixels. In this work we use a modified version of
Normalized Cuts [45] for segmentation. For each image region we compute a
feature vector representing color, texture, size, position, shape [5], and color
context [8]. More specifically,

e Size is represented by the portion of the image covered by the region

e Position is represented using the coordinates of the region center of mass
normalized by the image dimensions

e Color is represented using the average and standard deviation of (r=R/(R+G+B),
g=G/(R+G+B), S=(R+G+B)) over the region. We use this color space in-
stead of RGB to reduce correlation among the three bands.

e Texture is represented using the average and variance of 16 filter responses.
We use 4 difference of Gaussian filters with different sigmas, and 12 oriented
filters, aligned in 30 degree increments. See [46] for additional details and
references on this approach to texture.

e Shape is represented by the ratio of the area to the perimeter squared, the
moment of inertia (about the center of mass), and the ratio of the region
area to that of its convex hull.

e Color context is represented by four colors each one representing the color
of adjacent regions, restricted to four 90 degree wedges [8].

A region, together with its feature vector, will be referred to as a “blob” [18].

Our language model is the commonly used “bag of words” where word order is
not used. Various pre-processing strategies can be used to increase the likeli-
hood that words can be connected to visual attributes of image regions [6]. In
this work we use a subset of the SemCor [26] vocabulary as described further
below (Section 6).

To statistically link blobs with words we assume that there are hidden fac-
tors (concepts) which are each responsible for generating both the words and



blobs associated with that factor. This binding of their generation leads to
the capacity to link words and blobs. We further assume that the observa-
tions (image and associated text) are generated from multiple draws from the
hidden factors or nodes. Without modeling image generation as being com-
positional — region models can be used in arbitrary configuration to handle
images with known regions but in different arrangements — we would need
to model all possible combinations of entities. For example, we would have to
model tigers on grass, tigers in water, tigers on sand, and so on. Clearly, one
tiger model should be reused when possible.

We model the joint probability of a particular blob, b, and a word w, as

ZPw\l (bl P(1) (1)

where [ indexes over the concepts, P(l) is the concept prior, P(w|l) is a fre-
quency table, and P(b|l) is a Gaussian distribution over features. We further
assume a diagonal covariance matrix (independent features) because fitting a
full covariance is generally too difficult for a large number of features. This
independence assumption is less troublesome because we only require con-
ditional independence, given the concept. Intuitively, each concept generates
some image regions according to the particular Gaussian distribution for that
concept. Similarly, it generates one ore more words for the image according to
a learned table of probabilities.

To go from the blob oriented expression (1) to one for an entire image, we
assume that the observed blobs, B, yield a posterior probability, P(I|B), which
is proportional to the sum of P(l|b). Words are then generated conditioned on
the blobs from:

P(w|B) pru (1|B) 2)

where by assumption

P(I|B) ZP 1|b) (3)

and Bayes rule is used to compute P(l|b) o< P(b|l)P(l).
Some manipulation [7] shows that this is equivalent to assuming that the word

posterior for the image is proportional to the sum of the word posteriors for
the regions:

P(w|B) o 3 P(w|b) (4)



We limit the sum over blobs to the largest N blobs (in this work N is sixteen).
While training, we also normalize the contributions of blobs and words to
mitigate the effects of differing numbers of blobs and words in the various
training images. The probability of the observed data, WU B, given the model,
is thus:

max(Np) maxz(Ny)

P(WUB>=H(;PW>P(0) | (;Pwu)P(uB)) G

beB weWw

where maz(Ny) (similarly maz(N,,)) is the maximum number of blobs (words)
for any training set image, N, (similarly N, )is the number of blobs (words)
for the particular image, and P(l|B) is computed from (3).

Since we do not know which concept is responsible for which observed blobs
and words in the training data, determining the maximum likelihood values
for the model parameters (P(wll), P(b|l), and P(l)) is not tractable. We thus
estimate values for the parameters using expectation maximization (EM) [21],
treating the hidden factors (concepts) responsible for the blobs and words as
missing data. In the EM computation we alternate between the following two
steps:

Expectation(E) Estimate the expectations of the unobserved data from the
previous estimates of the parameters. In particular, for each blob and word
in the training data, we estimate the probability that it comes from each of
the hidden factors (concepts).

Maximization(M) Estimate the model parameters (P(w|l), P(b|l), and P(l))
by maximizing the expected log-likelihood computed during the E-step.

The model is not particularly sensitive to the number of concepts, and we
did not attempt to optimize the number of concepts for this work. In previous
studies [9,6,5] we found that 500 concepts has adequate for five to ten thousand
images. In this work we used 1000 concepts for the experiments with training
sets of the order of 18,000 images, and 100 concepts for the experiment with
training sets of the order of 1500 images.

The model generalizes well because it learns about image components. These
components can occur in different configurations and still be recognized. For
example, it is possible to learn about “sky” regions in images of tigers, and
then predict “sky” in elephant images. Of course, predicting the word elephant
requires having elephants in the training set.



4 Using Word Prediction for Sense Disambiguation

In the context of word sense disambiguation, our vocabulary is assumed to
be sense disambiguated. Formally, we use an extended vocabulary S, which
contains the senses of the words in a vocabulary W. Notationally, if the word
bank € W then {bank_1, bank_2, ...} € S. Thus, every sense s € S is the sense
of only one word w € W. Once a model has been trained on S, we can use
the annotation process to compute P(s|B). Different than annotation, word
sense disambiguation has the additional characteristic that we are trying to
only distinguish between the senses, s, for a particular word, w, rather than
produce a number of good choices from all of S, which is clearly more difficult.

Given a word, w, under consideration, we assume that senses for all other
words should not be predicted. Operationally we simply take the posterior
probability over all the senses in our vocabulary, and set those not corre-
sponding to w to zero. We then rescale the posterior so that it sums to one.
This computation yields the probability of a word sense, s, given w, and the
visual context, B, which we denote as P(s|w, B).

Being able to constrain the word prediction domain makes the process more
accurate and thus more useful. Linking words — which carry semantics — to
images, is a difficult task, and limiting the choices the system has to make is
generally helpful. For example, as shown in Figure 3, if we know the words in
a caption, and thus can constrain region labeling to those words, then labeling
performance increases substantively.

4.1 Combining Word Prediction and Traditional Word Sense Disambiguation

The quantity P(s|w, B) can be used as is for word sense disambiguation, and
we provide results for this strategy. It is also natural to combine it with text
based methods, as it seems to provide an orthogonal source of information.
Here we assume that a text based method can provide a second estimate of
the probability P(s|w, W) for the sense, s, for w, based on the observed words,
W (the senses are not known a priori). We discuss our choice of P(s|w, W)
below (Section 4.2).

We assume that these two estimates are relatively independent, which gives
the following simple expression for combining them:

P(s|lw, B,W) < P(s|w, B)P(s|lw, W). (6)

While the two estimates are likely to have some degree of mutual information,



Fig. 3. lustration of the improvement in region-labeling due to being able to restrict
the predicted words to those known to be in the caption. The task here was to find
tiger regions in the image data base. The best tiger regions found are shown. The
top group was determined only using image data, whereas the bottom group was
found using both image data and the five keywords, one of which was tiger. We
emphasize that this task is not precisely analogous to word sense disambiguation.
The key point is that our difficult prediction problem becomes easier when we can
constrain our predictions to a small number of choices.

the results below suggest that there is enough independence to be useful.
We have considered the possibility that both estimates might embody the
empirical sense distribution, and that compensating for this may provide a
better strategy, but our most robust results have been with the the simple
independence assumption above.
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4.2 Traditional Word Sense Disambiguation

The probability P(s|w, W) in (6) is assumed to come from a traditional text
based word sense disambiguation algorithm. In preliminary [6] work we used a
naive algorithm based on distances computed using WordNet [42] among words
forming the context and words related to proposed senses. This algorithm
produced a score instead of a true probability, and was calculated using work
from [6], which itself was drawn from [3,40].

We found that the performance of this algorithm was poor, leading to the
question of whether our original results using image information would be
overshadowed by a more sophisticated text based WSD algorithm. Thus we
implemented the two methods mentioned above. We describe the first one in
detail next. The second algorithm proved to be less interesting in our domain,
as it is an attempt to capture usage statistics, which the image based algorithm
has access to in training. Thus our need for some independence between the
two sources of information breaks down, and the results were not very good.

4.2.1 Iterative Word Sense Disambiguation

The SMUaw algorithm (and a recent derivative, SenseLearner [39]), has been
shown to perform very well [23,1]. As such, we based our main text-based
algorithms on the technique of iterative word sense disambiguation presented
in [41].

This method makes use of both WordNet and the semantically tagged corpus
SemCor, and consists of 10 algorithms which act as filters on the input data.
Each algorithm in the pipeline uses a different heuristic to disambiguate a
word and moves it from the set of ambiguous words, SAW, into the set of
disambiguated words SDW (a process referred to here as “marking”). These
procedures range from removing proper nouns and monosemous words to con-
necting words which have certain semantic distances. The original algorithm
gave words a definite sense based on computational heuristics associated with
each filter. As the approach described above requires softer output, we mod-
ified the algorithm so that information that would otherwise be lost at each
filtration step contributes to the score of the sense. Each of the procedures
was altered in the following ways (original procedure in italics):

(1) Mark all proper nouns with a WordNet sense of 1. No change.

(2) Mark all words with one sense as having that sense. No change.

(3) Ezamine the usage of the word and its neighbors in SemCor. If the count
of one sense is a certain threshold above the remainder of the senses,
remove and mark the word with that highest sense. Instead of dropping
the counts for the senses which don’t make the threshold, we normalize
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the array of sense frequency counts, and if one of the senses scores above
.75, we mark the word with that sense but retain the distribution data.

(4) For every sense of every noun in SAW, find all nouns which occur within
a window of 10 words from that sense usage and compile them together
to create “noun contexts” for each. The sense whose noun-context has
the greatest overlap with the tertual context of the word (defined as the
cardinality of the intersection of the noun context with the words in the
document), if it is greater than the next highest sense by a threshold,
should be marked. Again, instead of throwing away the overlap data we
instead store the entire array of cardinalities, normalize, and mark the
word if the highest is above a threshold, in this case .5.

(5) For every word in SAW , if one of its senses is within a semantic distance
of 0 (same synset) from a word in SDW , mark it with that sense. Instead
of throwing away data, a count for each word which was a semantic
distance of 0 from a given sense was tabulated, and then these counts
were normalized and used as substitute probabilities. Again, we mark a
word if it is above the likelihood threshold of .5.

(6) Same as above, but was performed within SAW (i.e. two words in SAW
which have senses with a semantic distance of 0 are marked with that
sense). Change is same as above.

(7) Same as fifth procedure, but with a distance of 1 (hypernym/holonym
relationship). Change is same as in 5.

(8) Same as sixth procedure, but with a distance of 1. Change is same as in
6.

All those words not disambiguated by the process were given a default distri-
bution which favored the most common sense. The end result is that the last
6 of the 8 procedures now produce softer distributions which are more useful
as part of (6).

12



5 ImCor

In previous work [10] we used the Corel image data set which has four or
five keywords per image. We labeled the senses of these keywords for 16,000
images, and identified a subset of 1,800 images with potential sense problems
using heuristics to bias the set towards ambiguous keywords. Nevertheless,
the amount of ambiguity across the dataset was not sufficient to provide for
realistic testing. For example, while a word such as head is usually ambiguous,
in the Corel dataset it overwhelmingly tends to be used in one way.

Given the inadequacy of this and all other existing image datasets for this
kind of work, we created a new research corpus named ImCor. This corpus
links the images from the Corel dataset with the sense disambiguated SemCor
corpus to provide a new corpus which links images with semantically tagged
text. (We have made ImCor available for research purposes [31]).

5.1 Building Imcor

The task at hand was to link images with text passages from SemCor to
provide images linked to text more along the lines as one would find in a
newspaper or magazine setting. The Corel keywords were used to determine
an initial set of 30 candidate images for each of the SemCor articles. We
developed a tool to facilitate human selection of text for the image candidates
(Figure 4). The rater would then be asked to first choose whether the image
was appropriate for the text, and, if so, the rater further selected the text
passage within the article that was most appropriate.

The magnitude of the task meant that two raters were required to build the
corpus. We divided the data between them so that there was an overlap of one
article in six. The Kappa statistic for the agreement between the two raters on
this subset was 0.575, which is appreciable, but less than hoped for, reflecting
the subjective nature of the task.

The end result was a list of documents with associated images marked either
as “inappropriate”, “no text” (for images which illustrated the article as a
whole but no specific part), or “appropriate” with paragraph text from the
article. We then gathered the appropriate images into a single corpus with the
disambiguated text becoming the captions. We incorporated images which
were associated with the article as a whole but no specific text segment by
assigning them a random sampling of words from the article with a selection
factor of %, where P is the number of paragraphs in the article. The end result
was a corpus of 1633 image/text pairings, in which 86.83% were tagged with
specific paragraph text and 13.17% with random samplings from documents.

13



o/ Image Selector
fl'hat's what the man had said. Haney peered doubtfully at his drinking companion through e
bleary, tear-filled eyes. He had no ready answer, as much from surprise as from the fit of
coughing. Was the man drunk or crazy or both? ? But his new-found buddy had matched him
drink for drink until he lost count, and the man's eyes were still clear. The guy is off his rocker,
Haney thought to himself, and looked away from those eyes. Eyes that were clear, but also
bright with a strange intensity, a sort of cold fire burning behind them. Why had n't he noticed it
ibefore? ? No, the man was not drunk He wondered how he got tied up with this stranger. But,
of course, he remembered now. It was blurred, after two hours of steady drinking, but the
loccasion of it came back to him. The stranger, his head seemingly sunk in thought, started to
cross the street against the light just as a huge moving van roared through the intersection.

Brakes howled and a horn blared furiously, but the man would have been hit if Phil had n't called
out to him a second before. His shout had been involuntary, something anybody might have done
without thinking, on the spur of the moment. As a matter of fact, he would n't have cared at all f
the guy had been hit. Actually, he regretted having opened his mouth when the truck came to a
stop and the angry driver jumped down from the cab and walked back toward them. By then,
the stranger was thanking Haney profusely and had one arm around his shoulders as if he were an
old friend. So the driver started to curse at both of them as if they had been in a plot together to
iruin his safe-driving record. Then the man he saved turned and looked squarely into the truck
driver's face, without saying a word. Very suddenly, the driver stopped swearing at them, tumed
on his heel and went to his truck. Haney had n't given it much thought at the time. Now he
recalled it very clearly, and wondered what the truck driver had seen in those eyes to make him
iback off. It must have been the sort of look that can call a bhuff without saying a word. When
the light went their way, they went on across the street. And when the stranger found out that
Phil was on the way to one of his favorite bars, he insisted on offering to buy drinks for both of
them Phil usually went alone and kept to himself, sitting in a corner and passing the time by
nursing his favorite grudges. But he decided he would n't mind company in retumn for free drinks,
even though he made good money at his job. Phil was like that Now he wondered if it was

AR AT R L

worth it, having a screwball for company. He really did n't take the offer seriously, but he began I Is this image appropriate?
to feel uneasy. When he finally got the coughing under control, he realized that Pete-LRB- all he r

gave was his first name-RRB- was still waiting for an answer--he did n't even seem to wink as he NS
continued to stare. Haney managed a weak laugh. " Guess I ca n't think of anyone, Pete.

Thanks anyhow". A faint crease appeared between the man's eyebrows. " I think youaren't v &

Fig. 4. A screen-shot of the program used to select text passages from SemCor
semantically linked to images. The rater reads the article on the left and then looks
at a picture. If that picture is appropriate, they click the box in the lower right. At
that point the rater has the opportunity to select any text which is appropriate,
indicate that they have done so, and then move on to the next image.

5.2 Expanding ImCor

While a carefully sense disambiguated annotated corpus of 1633 images goes
far beyond what is available, it is still relatively small for our purposes. There-
fore we exploit the fact that there is much semantic redundancy in the Corel
image data (e.g., there are at least 50 images of planes/jets with very similar
keywords), to find additional images which are appropriate for the captions
found in the first step. Any image which was not already used that shared two
or more keywords with an image which had been paired with SemCor text was
added to the corpus with that text. This operation produced a new version of
the corpus with 20,153 image/text pairings.
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6 Experiments

For our experiments we produced twenty different breakdowns of our corpus
into training and testing sets (90% training, 10% testing). In our corpus there
are a number of images which are used two or more times, and thus we took
care to ensure that in these cases the entire group was assigned either to the
training or testing sets. For each split, we then determined the vocabulary
based on the training set. We first removed stop words from the corpus to
reduce computation. We then eliminated all word senses which occurred less
than 20 times (50 times in a second experiment). If this produced images
without words, then they were removed, and the vocabulary was recomputed,
iteratively, if needed. Typical vocabulary sizes were 3800 senses from about
3100 sense blind words (300 / 2600 for the second experiment). To provide
some idea of the vocabulary, we noted 193 senses starting with the letter “m”,
of which 137 were unambiguous, and 56 had at least two senses. Those 56
senses were:

machinery_1 machinery_2 major_1 major_2 major_3 make_1 make_10 make_12
make_13 make_17 make_2 make_3 make 4 make 6 make 8 man_1 man_2
man_3 man_4 man_5 marvel_1 marvel_2 mass_1 mass_3 mass_4 matter_1 mat-
ter_2 maturity_1 maturity 2 mean_1 mean_2 mean_3 measure_2 measure_3
memory_1 memory_2 mention_2 mention_3 mind_1 mind_2 miss_2 miss_6 mo-
ment_1 moment_2 monotonous_1 monotonous_2 month_1 month_2 moral_1
moral_2 mortal_1 mortal_2 mouth_2 mouth_3 musician_1 musician_2

Next we trained the word prediction model (Section 3) on the combined image
sense data. We used the features described above for the 16 largest image
regions, or, if there were fewer than 16, then we used all of them. We then
applied the model to the test data to predict senses according to (4), restricted
to the senses for each word under consideration as described in Section 4. We
also combined the image and text results as described in Section 4.1 to get
two sets of final results for word sense disambiguation. Figure 5 shows a few
examples where the text based method gives the wrong sense but adding image
information leads to the correct sense.

We compute performance using only documents which have at least one am-
biguous word. By construction, if all the words in a test document have only
one sense, then our measurement process would score all algorithms as giv-
ing the correct sense, which would inflate performance figures, and dilute the
effects that we are investigating. For our baseline we use the performance of
the empirical distribution of the training set, which was roughly 60%. This is
a harsher baseline than the simple “most common sense” method, which has
been found to be surprising effective [48], as the empirical distribution gives
the common sense for the particular corpus being investigated. We omit re-
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Sense tagged words around plant:
rooting_1 developed_1 compost_1 sand_1
benefit_1 good-1 find_1 day_3 feel 2 sepa-
rate_1 top_2 half_1 plant_2

Sense tagged words around water:
reach.1 location.1 sundown 1 herd_1
water_2 and_then_1 broad-1 grass_1 flat_1

Fig. 5. Two cases where image information proved to be helpful. In (a), text based
word sense disambiguation gives the canonical, abstract meaning of “water”, wa-
ter_1 (substance). Adding image information gives the correct sense, water_2 (body
of water). In (b), using text alone gives the incorrect sense for “plant”, plant_1
(factory). Adding image information gives the correct sense, plant_2 (botanical). In
both cases the more visual, but less common, sense was promoted by the statistical
model linking image features to words. However, we caution the reader that most
words used in this study are not particularly visual, and most examples are not this
clear cut. Nonetheless, correlates between visual features and word senses which are
consistent between training data and testing data can help disambiguate senses as
demonstrated in the quantitative results.

sults using a second text WSD method [36] as they were roughly comparable
to our base line (a score of zero), which is not surprising after the fact given
the nature of that algorithm and our corpus.

We provide results in two forms. In Table 1 we report the average absolute
scores over the 20 samples. In Table 2 we report the amount by which the
performance of each method exceeds that of the baseline, averaged over the
20 samples. This controls somewhat for subset difficulty, and makes it easy to
identify non-trivial performance since doing so results in positive values.

The results of combining the two sources of information are very promising, as
the performance went beyond that of either method alone, which was exactly
what we were trying to achieve. On the large data set (extended ImCor) we
were able to increase performance over the baseline by nearly 20% yielding
nearly 80% absolute performance. In the small (seed) data set, the performance
increase was more modest, yielding 5% improvement. In all three cases, the
results are statistically significant. Specifically, we performed a paired ¢ test
for the performance with images and text exceeding that of text alone over
the 20 samples with 9 degrees of freedom, reflecting the fact that we have
roughly 10 independent samples in the 20 sets due to sampling 10% of the
data at a time. For the three experiments we have: (1) (M=0.133, SE=0.0030)
with ¢(9) = 44.8, p < 0.0005; (2) (M=0.140, SE=0.003) with #(9) = 49.6,
p < 0.0005; and (3) (M=0.048, SE=0.011) with ¢(9) = 4.5, p < 0.001.
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Data set Minimum | Baseline Text only | Image only | Combined
sense count using [41] (using (6))
Full 20 0.615 0.683 0.791 0.817
Full 50 0.606 0.674 0.781 0.814
Seed 20 0.571 0.693 0.687 0.741
Table 1

Restricted word prediction results for the word sense disambiguation experiments.
The first two rows are for the extended ImCor data set (20,153 text passages paired
with images) at two different values for the the minimum number of times that a
word sense needs to be used in the training data in order to be considered part
of the vocabulary. For completeness, the third row is the result using the manu-
ally produced seed data set (1,633 pairs), even though the data is a bit sparse for
our learning method. The numbers tabulated are the fraction of times the sense
was correctly chosen. Every document processed has at least one ambiguous word.
Some words are unambiguous, and all algorithms score correctly on those words by
construction. The results shown are the average of 20 different breakdowns of train-
ing and testing. The error, as estimated from the variance over the 20 test/training
splits, is about 0.003 for the first two rows, and about 0.01 for the third row. Incor-
porating image information is statistically significant at p=0.01 in all three cases,
using paired ¢ tests.

Data set Minimum Text only us- | Image only Combined
sense count | ing [41] (using (6))
Full 20 0.069 0.177 0.202
Full 50 0.068 0.175 0.208
Seed 20 0.125 0.116 0.173
Table 2

Analogous results for that in Table 1, but here we show the performance increase
of each method over the empirical distribution baseline, averaged over the samples.
Comparisons based on these numbers are more accurate than comparing the overall
performances reported in Table 1 because the results for the empirical distribution
controls somewhat for sample difficulty. The estimated errors in the numbers are
0.003 for the first two rows, and about 0.01 for the third row.

We can further interpret the results in Table 1 by noting that each run at-
tempts to find senses for about 7,000 words distributed over about 800 docu-
ments. The 7,000 words have about 20,000 senses among them, relative to our
vocabulary. Thus our baseline method, performing at about 60% specifies the
correct sense for about 4,200 words, and misses 2,800. The combined method,
performing at about 80%, misses about half that amount (1,400).

Finally, in Table 3, we provide the average counts of correct sense identifica-
tion, restricted to words which are ambiguous. Again, in all three experiments,
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Average num- | Baseline Text only | Image only | Combined
ber of ambigu- using [41] (using (6))
ous words
6975 4506 4935 5082 5361
6204 3986 4390 4515 4803
697 411 477 454 498

Table 3

Average counts for the number of senses correctly identified over the 20 samples for
each of the three experiments. The total number of ambiguous words is provided in
the first column. These results are consistent with those in the previous two tables,
but they do not map exactly onto those numbers because here only words which are
ambiguous with respect to the vocabulary are counted. The errors in the first two
rows are roughly 11, and the errors in the third row are roughly 4. All differences
between WSD with text only and WSD with text with images are significant at
p=0.0005.

there is a significant performance increase due to adding image data. Specif-
ically, in a paired t test for the results using images and text being greater
than that using text alone over the 20 samples with 9 degrees of freedom
we have, for the three experiments: (1) (M=426, SE=10.4) with #(9) = 41.0,
p < 0.0005; (2) (M=413, SE=11.4) with #(9) =36.2, p < 0.0005; and (3)
(M=21.2, SE=4.0) with ¢(9) = 5.3, p < 0.0005..

We emphasize that our domain was constructed somewhat artificially to test
our ideas, and that some of the improvement going from the small (seed)
data set to the larger one is likely due to the system taking advantage of
the structure of the Corel data. However, even in the seed data case, where
there was only limited image data to train on but the corpus was more pure,
we found a statistically significant improvement in word sense disambiguation
performance when image data was included.
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7 Conclusion

The main conclusion from this work is that visual information can help disam-
biguate senses, and thus help determine language meaning. In fact, on a small,
relatively friendly domain, we were able to exceed the performance of two text
based methods. We were further able to improve performance by combining
text and imaged based information. Our experiments thus suggest that image
information as captured by our approach can be sufficiently independent from
textual based cues that combining the two sources of information can prove
fruitful.

A second important contribution of this work is the development of a new
corpus, ImCor, which links images with sense disambiguated text. As linking
images with text is an important emerging research area, this data set will
help researchers in this area evaluate the extent to which various approaches
capture the semantics of the visual data.
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