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ABSTRACT
We present a general approach for automatically matching
electronic slides to videos of corresponding presentations for
use in distance learning and video proceedings of confer-
ences. We deal with a large variety of videos, various frame
compositions and color balances, arbitrary slides sequence
and with dynamic cameras switching, pan, tilt and zoom.
To achieve high accuracy, we develop a two-phases process
with unsupervised scene background modelling. In the first
phase, scale invariant feature transform (SIFT) keypoints
are applied to frame to slide matching, under constraint
projective transformation (constraint homography) using a
random sample consensus (RANSAC). Successful first-phase
matches are then used to automatically build a scene back-
ground model. In the second phase the background model
is applied to the remaining unmatched frames to boost the
matching performance for difficult cases such as wide field of
view camera shots where the slide shows as a small portion
of the frame. We also show that color correction is helpful
when color-related similarity measures are used for identify-
ing slides. We provide detailed quantitative experimentation
results characterizing the effect of each part of our approach.
The results show that our approach is robust and achieves
high performance on matching slides to a number of videos
with different styles.

Categories and Subject Descriptors
I.2.10 [Information Systems]: Information Storage and
Retrieval
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1. INTRODUCTION
In this work we consider matching electronic slides to pre-

sentation videos captured by one or several cameras, either
fixed or allowed to pan tilt and zoom. More formally, given
a sequence of video frames F = {f1, f2, . . . , fn} and im-
ages of the electronic slides S = {s1, s2, . . . , sm} associated
with them, we are interested in finding a mapping function
M : F → S such that M(fi) = sj if frame fi contains slide
sj and M(fi) = 0 when there is no slide visible in frame fi.

Matching slides to videos provides an attractive way of in-
dexing videos by slides for searching and browsing. By find-
ing the original electronic slide that is displayed at any point
in time along the video, it is possible to display clear, high
resolution slides side by side with the video. This matching
automates a currently manual process in the preparation of
class content for distance learning, therefore reducing time
to publish and labor costs. It further allows to adjust the
quality of the slide images in video frames (resolution, color,
and contrast), and to index and retrieve video segments us-
ing the textual content of the corresponding electronic slides.

Slides to video matching has been studied for about a
decade. Early work such as the Classroom 2000 Project [1]
and BMRC Lecture Browser [14] manually edit time stamps
to match the slides to the video clips. Recently some au-
tomatic approaches [3, 5, 6, 10, 12, 15] have been proposed
to match or synchronize slides to videos. Such approaches
usually involve two steps: 1) locating slides or extracting
texts in the video frames; and 2) identifying slides by us-
ing some recognition methods such as template matching or
string matching. In such a matching process, the first step
is crucial as it directly determines the performance of the



follow-up recognition task.
In what follows, a slide refers to an image, automatically

extracted from a presentation file (e.g., PPT or PRZ files).
Video frames, often denoted keyframes when they represent
segments of the video, or in short frames, are extracted from
the (compressed) digital video of the presentation.

We divide the video frames into 3 types, or categories.
A frame is called a full-slide frame if the entire frame
shows the (usually entire) slide content. Otherwise, it is
called a small-slide frame if it contains both a slide area
and a substantial portion of scene background. These are
usually wide field of view shots of the presenter along with
the projection screen. A frame without any slide is referred
to as a no-slide frame.

In a video capturing system, where several cameras are
mixed and are allowed to pan tilt and zoom, the contents
of the video frames can vary greatly. For example, when
a slide is captured in the video, it may appear small, full-
frame, or clipped (camera zoom-in). Further, the slide con-
tent may appear in whole or in part, such as during an
animation, and might suffer partial occlusion, e.g., by the
speaker. Even worse, not only the geometry and content
of the projected slide varies, even the colors might change
greatly due to switching between cameras with different set-
tings, and any dynamic changes in camera settings, e.g. an
automatic shutter response to changes in ambient illumina-
tion or slide brightness. When no electronic slide is present,
the frame may show the speaker and some scene background,
or just background (e.g., part of the classroom, the audience,
or both that is visible in some video frames). In other cases
the frame may still show the projector screen, displaying
non-slide content such as a demo, a video, or a web page.
Throughout the paper we refer by background to the class-
room scene background (not to be confused with the slides’
template or “background”, that are not discussed in this
work).

Figure 1 shows different types of frames captured in a
presentation. In many cases the slide’s text is not recogniz-
able, so text-based matching approaches are not appropri-
ate. Also, when large amount of camera zoom is applied it
might become very challenging to accurately spot the corre-
sponding slide area. It is therefore desired to have a unify-
ing matching approach that can handle all these difficulties
without being limited by the camera setup or the frame type.

Towards this goal, we propose a new robust approach to
match slides to video frames regardless of the frame type.
Our algorithm uses random sample consensus (RANSAC) [7]
to robustly estimate homographies between frames and slides
based on scale invariant feature transform (SIFT) keypoint
matching [11]. SIFT keypoint features are highly distinc-
tive and are invariant to image scale and rotation. They
can provide correct matching in images subject to noise,
blurring and illumination changes. Hence our approach can
deal with a large varieties of videos, including those of less
than professional quality.

As one may assume, full-frame slides are the easiest to
match. When slides are shown small in the video, the match-
ing task is harder, and the RANSAC process might fail
to find a good slide match. We propose several strategies
to help RANSAC deal with this difficulty effectively and
efficiently. Our approach is to process the video frames
in phases, where in the first phase we fetch to find high-
confidence matches for the “easier” cases and the rest, un-

matched slides, are being classified by their types. The suc-
cessful first-phase matches are then used to build a scene
background model automatically. In the second phase, the
model is applied to the remaining unmatched frames to
boost the matching performance of the more difficult cases.
We also show that color correction is helpful when color-
related similarity measures are used for identifying slides.

The remainder of the paper is organized as follows. Sec-
tion 2 gives a short review on SIFT features, homography
and RANSAC. Section 3 presents our slides to frame match-
ing algorithm in details. Section 4 describe a simple color
correction model. Section 5 demonstrates the experimental
results. Finally, Section 6 concludes our results and outlines
future work.

2. OVERVIEW: SIFT KEYPOINTS, HOMO-
GRAPHIES AND RANSAC

The basic step in matching a video frame with its corre-
sponding slide involves with estimating the geometric trans-
formation between the frame and the slide, identifying the
corresponding slide (i.e., slide number), and computing the
level of confidence in this match. In oppose to most past
approaches which aim at separating between the transfor-
mation estimation and the slide identification by first look-
ing for the slide region in the frame, here we simultane-
ously solve for both the transformation and the identifica-
tion problems using RANSAC on SIFT keypoints, and fur-
ther use those to estimate the matching confidence. Our
approach is fully automatic and can handle video capture
systems with few limits on the motions (pan, tilt, zoom and
even movement) of the cameras.

2.1 The SIFT Descriptor
Recently, great progress has been made in object recog-

nition by using local descriptors such as the scale invariant
feature transform (SIFT) keypoints [11] used here. SIFT
keypoints are points of local gray-levels maxima and min-
ima, detected in a set of difference-of-Gaussian images in
the scale space. Each keypoint is associated with a loca-
tion, scale, orientation and a descriptor - a 128-dimensional
feature vector that captures the statistics of gradient orien-
tations around the keypoint. SIFT keypoints are scale and
rotation invariant and have been shown robust to illumi-
nation change and viewpoint change. Figure 2 shows the
SIFT keypoints detected in a slide. Since SIFT is based on
the local gradient distribution, as seen in the figure, heav-
ily textured regions produce more keypoints than a color-
homogeneous region. Fortunately for our application, text
on slides yields many, well distinct keypoints.

Given the keypoints detected in two images A and B,
Lowe [11] presents a simple matching scheme based on the
saliency of the keypoints. A keypoint PA from image A is
considered a match to a keypoint PB from image B if PA is
the nearest neighbor of PB in the descriptor’s feature space
and

d(PA, PB)2

d(P
′

A, PB)2
< τ

2 (1)

where d(., .) denotes the Euclidean distance between the de-
scriptors of the two keypoints and P ′

A is the second nearest
keypoint of PB in image A. For simplicity, we refer to this
matching algorithm as the nearest neighbor (NN) algorithm.



(a) Full slide (b) Zoom-in slide

(c) Zoom-out slide (d) Slide with dramatic color change

(e) Animated slide (f) No slide

Figure 1: Different frame types captured by camera. Except 1(f), which shows two frames without slide,
each pair includes an original slide image (left) and one of the sample video frames of the slide (right). In
(b), the red box in the left image indicates the original slide area of the frame in the right. According to the
definitions in Section 1, (a), (b), (d) and (e) are full-slide frames, (c) is small-slide frame and (f) is no-slide
frame.



In [11], a threshold τ = 0.8 was selected for object recog-
nition. In our experiments, we found that this threshold
excludes the majority of outliers while keeping a good por-
tion of the correct matches. Hence, we set τ = 0.8 in all our
experiments. Fig 2 shows a putative matching result found
by this scheme.

The above matching scheme searches keypoint matches in
the whole images. However, if the transformation between
two images is given, we can project the keypoints in one
image to the other one and find keypoint matches locally
within some range r, i.e we add another criterion as follows,

|(PB(A)PB)| ≤ r (2)

where |.| is the Euclidean distance between PB and the pro-
jection of PA in the image B. We refer this searching scheme
as local mode in comparison to the above global mode.
When slides are small, keypoints on them become less dis-
tinctive and a global search rejects many correct matches.
Instead, a local search can not only gives more keypoint cor-
respondences, but also be more likely to ensure more correct
ones due to geometric constraints (the known transforma-
tion). In the following section, we will discuss how to find
the transformation between a slide and a frame to make this
scheme applicable.

(a) SIFT keypoints

(b) Putative matching (c) Correct matching

Figure 2: Keypoint matching. The top two images
shows keypoints detected in two images. An ar-
row attached to each keypoint shows the associated
scale and rotation features. The image on the bot-
tom left shows matches proposed by simple nearest
neighbor algorithm. The image on the right shows
proper matches that share a homography from slide
to frame. For clarity we only display about one quar-
ter of the keypoint matches.

2.2 Fitting a Homography using RANSAC

Outliers Ratio (%) 10% 25% 50% 75%
# RANSAC iterations 4 12 71 1177

Table 1: The number of RANSAC iterations re-
quired to ensure 99% confidence that at least one
sample will have no outliers for a sample size of 4
keypoints (homography).

The mapping between a coplanar set of points and its
perspective projection on an image plane is provided by a
Homography. The homography H between a slide and its
projected image in the frame plane can be determined by
four or more pairs of corresponding keypoints by solving
X ′ = HX where X is a set of slide keypoints and X ′ is
the corresponding frame keypoints. In this work, we used
the Normalized Direct Linear Transformation (See [9] for
details.) to estimate H .

SIFT keypoints are highly distinctive. As shown in Fig
2, the simple matching scheme can give a set of putative
correspondences with a good portion of correct keypoint
matches. However, the outlying correspondences, even a
few, can severely affect the estimation of a homography.
Here we use RANSAC to search for the true keypoint cor-
respondences by imposing a homography on the putative
correspondences found by the NN algorithm.

RANSAC is an iterative random algorithm. At each iter-
ation, a randomly selected subset of four pairs of matched
keypoints is used to compute a hypothesized homography.
The hypothesis is then evaluated by checking how many
of the remaining matched pairs of keypoints are consistent
with it. Hence the required number of iterations to ensure
high probability of detection depends on the percentage of
the outliers in the data. Table 1 shows that the number
of iterations required for homography estimation increases
dramatically as the rate of outliers increases. In our ex-
perimentations, when the slide area occupies all or most of
the frame, there are less than 50% outliers in the putative
metched keypoints. In such a case, testing 100 hypotheses is
sufficient to ensure a 99% chance of finding the correct ho-
mography H . In Section 3, we address some of the difficult
cases where more samplings are required.

3. THE SLIDES TO VIDEO MATCHING AL-
GORITHM

In general, RANSAC works very well on our test data and
achieves impressively high performance. However, it faces
a few challenges due to the high complexity of this data.
Firstly, when the slide’s area is very small in the frame and
the slide does NOT have rich texture (e.g., slides containing
only a single plot, a small table or very little text) RANSAC
might fail to find the homography due to the interference
of outliers from the background scene surrounding the slide
area in the frame. Secondly, more than a third of the frames
in our data has no slides. Matching them to slides takes
a lot of time. We propose an approach called background
matching to overcome these problems.

Our algorithm includes three stages - two RANSAC-based
recognition phases with an unsupervised scene background
modelling in between. Initially, all frames are marked UN-
DECIDED, i.e. their types are unknown. RANSAC is
then run with a small number of iterations to gather use-



ful information about the frame types. In the second stage
background matching and a binary classifier are applied to
further determine the frame types for remaining undecided
ones. Finally, RANSAC is run again, but only on the unsuc-
cessful frames with slides or the undecided slides from the
first run. Note that FULL, SMALL and NOSLIDE in the
following algorithm correspond to full-slide , small-slide
and no-slide frames defined above, respectively.

The algorithm is summarized as follows:,

1 Mark all frames as UNDECIDED.

2 Run RANSAC with a number of iterations N1 to find
slide matches for each frame. If an acceptable slide
match for a frame is found, mark the frame either as
FULL or as SMALL according to the ratio of the slide
area over the whole image.

3 Using the information obtained in Step 2, build a bi-
nary classifier to detect all full-slide frames and mark
them as FULL.

4 If no SMALL frames were found in Step 2, skip to step
5. Otherwise, create an (unsupervised) scene back-
ground model, apply background matching on all UN-
DECIDED frames and classify them as SMALL or
NOSLIDE.

5 Run RANSAC again with a number of iterations N2

on all frames that have not successfully claimed slide
matches in the first run and are not labelled NOSLIDE.
For SMALL frames, use for matching only keypoints
from the slide area.

In our experiments, we set N1 = 100 and N2 = 400 based
on Table 1.

3.1 Matching Score

3.1.1 Keypoints-based Score
Each frame fj is compared to all the slides to find the best

matching slide. Let B(si|fj) denote the quality of matching
between slide si and frame fj . It can be regarded as the
similarity between si and fj . Let kij be the number of key-
point correspondences between si and fj that are consistent
with the best homography found by the RANSAC between
si and fj , then a simple expression of B(si|fj) is,

B(si|fj) =

(

kij
P

i kij
if kij ≥ m

0 otherwise
(3)

That is, the best matching slide is accepted if and only
if the score passes a certain threshold, m. We experiment
with different values of m, whereas higher value provides
higher confidence is accepted matches with the tradeoff of
higher risk to reject correct matches with small number of
correspondences. The effect of this threshold on the number
of errors is evaluated in Section 5.

3.1.2 Normalized Cross Correlation (NCC) Score
The normalized cross correlation (NCC) preferred in tem-

plate matching [8] is another important similarity measure
between two images. We define another similarity score as

B(si|fj) =



Cρij if kij ≥ m
0 otherwise

(4)

where ρij is the NCC between the projected image of si

in fj (after color correction) and the slide content of fj . C
is a constant that makes B a valid probability. ρ is set to 0
if it is less than 0. m is the same threshold as that defined
in Equation 3.

3.2 Scene Background Matching
The scene background interference with the RANSAC al-

gorithm is in large eliminated by using the background match-
ing. If the slide area of a small-slide is known, we can reduce
the background outliers affect on RANSAC by pruning those
erroneous keypoint matches from the area surrounding the
detected slide area. Although approaches proposed in pre-
vious work such as [6] and [10] could be used to detect the
slide area of in the video, they are not robust when the color
of slide area is not very distinguishable from to the scene in
the frames. We present a new approach to detect the slide
area of a small-slide frame by automatically matching the
background between frames.

As can be observed, small-slide frames usually share some
static objects in the scene such as floor, podium, walls, au-
dience etc (see Fig 1(c)). Let f1 be a small-slide frame
with known slide area detected by RANSAC. We call f1 a
reference frame. Let f2 be another small-slide frame with
unknown slide area. Similar to matching a slide to a frame,
we match between frame f2 and frame f1 by RANSAC and
estimate the transformation H between them. The known
area of f1 can now be transformed to f2 by H , to produce
the slide area in f2. Since the transformation H is estab-
lished by matching the shared background objects between
the two frames, we call this method “background matching”.
Note that the background is not a planar object, so the as-
sumption for the simple homography does not hold. A more
well-grounded transformation in this case is the fundamen-
tal matrix [9] between two frames. However, as long as the
parallax between the frames is minimal (that is, camera may
undergo pan, tilt and zoom but no significant translation),
homography is still an acceptable approximation.

Usually we only need to know one reference frame, which
can be obtained from the first RANSAC run. If more than
one reference frame is available, we can combine them to-
gether to get a ”big” reference frame for efficiency. We
briefly describe this idea as follows. Let F = {f1, f2, . . . , fm}
be a set of small-slide frames with known slide areas R =
{r1, r2, . . . , rm}. We pick the frame fk that has a slide lo-
cated closest to the the image center and match all the other
reference frames to fk. For each frame fi(i 6= k), we trans-
form all its keypoints and its slide area ri to the coordinates
of fk. Let K

i
′ and r

i
′ be the new keypoint set and the new

slide area for fi, respectively. Then, the new reference frame

can be expressed as fnew = (
Sm

i=1
K

i
′ ,

Sm

i=1
i
′

). Redundant
or similar keypoints are removed in the united set.

Once the slide area is spotted in a frame, we can prune the
erroneous keypoint matches from the background and apply
the local mode search to find more correct keypoint matches.
Thus, we greatly increase our chance of detecting the correct
slide match to the frame in the second RANSAC run. Fig 3
shows the background matching between two frames and the
successfully identified slide area by this approach.

3.3 Detecting No-slide Frames by SVM
Matching frames without slide to slides spends a lot of

time and can introduce false matches. Thus we would like to



(a) Scene background
matching

(b) Keypoint matching
inside the slide area only

Figure 3: Scene background matching between two
video frames. First, background matching is ap-
plied between two small-slide frames (left). The
white box in the bottom frame bounds the slide
area, which is known from a successful match in the
first RANSAC phase. It is used to infer the slide
area in the top frame. Next (right), keypoint match-
ing is applied between the projected slide area and
the slide, eliminating nearly all scene background
keypoints.

prune them from the process as soon as possible. However,
without prior knowledge, detection of background and no-
slide frames is not trivial. In this section, we show that
it is possible to detect no-slide frames without any prior
knowledge about the video.

Usually, there is significant visual difference between full-
slide frames and other frames containing substantial back-
ground (i.e small-slide and no-slide frames). We can first
separate full-slide frames from others by using a binary clas-
sifier. For frames not classified as full-slide frame, the back-
ground matching described above can further tell whether
they are a small-slide or no-slide frame.

We use linear-kernel SVM [4] as our binary classifier for
this task. The image features used are Color Coherence
Vector (CCV), a color histogram that incorporates spatial
information [13]. Given two images I and I ′, their CCV
distance is defined in [13] as,

dG(I, I
′) =

n
X

i=1

|αi − α
′

i| + |βi − β
′

i| (5)

where GI = 〈(α1, β1), . . . , (αn, βn)〉 and G′
I = 〈(α′

1, β
′
1), . . . ,

(α′
n, β′

n)〉 are the normalized CCVs of I and I ′, respectively.
We construct the SVM training data set as follows. Let Fl

be the set of full-slide frames detected in the first RANSAC
run in the matching algorithm. Similarly, Fs is defined as
the set of small-slide frames detected. We set the positive
samples D+ = S ∪ Fl where S is the set of original slides.
The reason for including Fl in D+ is to count for the pos-
sible varied light conditions. The negative samples D− are
selected as D− = Fs ∪ B where B is the k farthest frames

away from D+ in feature space. The distance of a frame fi

to D+ is formally defined as,

dD+(fi) = min
fj∈D+

dG(Ifi
, Ifj

) (6)

k is determined based on the size of D+ and Fs.
One drawback of this approach is that it has to rely on

background matching to single out the small-slide frames
first. If the first RANSAC run is unable to provide any in-
formation for background matching, this approach can only
separate full-slide frames from others.

4. COLOR CORRECTION
Images can vary greatly in color if captured under different

lighting conditions, as shown in Fig 1(d). If an algorithm
relies on a color-related measure to identify slides in videos,
then it has to take color issue into accounted. However,
most of the previous work have not addressed this issue.

(a) the original slide (b) the same slide cap-
tured by camera

(c) the registered slide (d) the slide after color
correction

Figure 4: Color correction

One simple color constancy model is a single linear trans-
formation. Let Cs = (Rs, Gs, Bs) be the color of a pixel in
the original slide image and Cf = (Rf , Gf , Bf ) be the color
of a pixel in the image registered from a frame to the slide
image. We can map Cf to Cs by,

Cf = MCs (7)

Solving (7) yields M = CfCT
s (CsC

T
s )−1 and the corrected

color C′
s can be obtained by,

C
′

s = M
−1

Cf (8)

Figure 4 shows a slide image after color correction.

5. EXPERIMENTAL RESULTS
In this section, we conduct detailed performance analy-

sis on each part of our algorithms. We first look at the
overall accuracy of our algorithms on recognizing slides in
videos. We then examine in detail the effectiveness of the
background matching method.



Dataset Video
Duration Full Small No

Total
PPT

(min) Slides Slides Slides Slides

#1 47 33 9 61 103 29
#2 55 76 3 72 151 39
#3 41 38 6 53 97 27

CONF1 #4 20 20 8 23 51 21
#5 39 41 12 64 117 34
#6 49 53 42 59 154 67

#1 68 122 3 103 228 63
#2 54 58 1 104 163 68

CONF2 #3 63 50 0 90 140 49
#4 52 40 1 61 102 33
#5 47 17 0 52 69 53

#1 39 33 9 61 103 44
UNIV #2 48 76 3 72 151 48

Table 2: Summary of the video data used in our
experiments.

5.1 Video Data
We construct a set of 13 presentation pairs (MPEG video

+ presentation file); 6 presentations from a corporate confer-
ence and 5 presentations from a scientific conference, both
captured using a similar setup of three pan-tilt-zoom cam-
eras, with live video editing; one camera tracks the speaker,
one camera covers the projector screen and is used to zoom
in on the slides, and the third camera captures the audience
[2]. Two more presentations are university seminars (de-
noted UNIV) captured by two cameras (one full-slide and
the other gives either small-slide or audience views). All
presentation files were prepared and delivered by different
speakers, thus in the corporate conference all speakers used
the same slides template. The video data is summarized in
Table 2.

We manually constructed a ground truth matching be-
tween frames and slides for evaluation purposes. Each keyframe
containing a slide is labelled with the slide number and with
full-slide or small-slide . Keyframes containing no slides are
marked with 0. The few frames showing missing slides are
marked as “missing” and are not considered in the evalua-
tion.

5.2 Video And Slide Image Processing
The videos were first processed by shot boundary detec-

tion and one keyframe was extracted from each shot. The
frame size is 320×240 for all the videos and the size of slides
is 443×342. We resized the slides to 320×247 for efficiency
considerations. A few PPT slides were missing in videos 3
and 4 because they were removed from the PPT files by the
speakers after the talk and before providing us with their
files.

The precision measure P used in our experiments is de-
fined as,

P = 1 −
# of correctly identified frames

# of ground truth frames
(9)

Throughout the results section we look at missrecognition
error counts, marked by the number of misrecongnized/total
slides. A slide is considered correctly recognized if it is
matched by the system to the same PPT slide number as
marked in the ground truth. Hence an error counts as either
matching with a wrong slide (rare) or failure to match with
any slide (the more common failure mode).

We experimented with two image similarity measures: one
is the counts of keypoint matches (KP), described in Sec-
tion 3.1.1 and the other is the normalized cross correlation (
NCC ) [8] defined in Section 3.1.2. The results on the first
data set are presented in Table 3, showing clear advantage
for using color correction with the NCC measure on full-

slide frames. However, Keypoint-based score outperforms
NCC and requires no color correction, so we selected it as
our similarity measure for the rest of the experimentation.

We considered the first phase algorithm with fixed 100
RANSAC iterations as the base algorithm ( keypoint match-
ing ). Table 4 display the results. It can be seen that
baseline recognition results are more than 97% accurate for
full-slide frames and even more accurate in classification of
no-slide frames. Most errors occur, as expected, in small-
slide frames.

It is worth to note that we experimented with keypoint
mapping either from frame to slide or from slide to frame.
Since the frame and the slide produce substantially differ-
ent sets of keypoints, and we use nearest neighbors to find
the matches, this mapping is not a symmetric relationship.
We found a clear advantage to mapping frame points to slide
points over going the other direction, in particular for small-
slide frames. This is partly because small-slide frames have
much fewer keypoints in the slide area, and mapping those
keypoints onto the slide has much higher chance to find cor-
rect correspondences than going the other direction. Hence
all the experimentation were carried this way.

Next we compare the background matching algorithm
described in Section 3.2 with the keypoint matching per-
formance. The background matching algorithm uses a
fixed number of 400 iteration in the second phase RANSAC
run. Table 5 shows the performance of these two algo-
rithms on the data set. In this table, KP(100) denotes
the keypoint matching performance and KP(400) de-
notes the performance of the same baseline algorithm when
the RANSAC is allowed for 400 iterations. The background
matching, denoted as BP(), was tested twice, once in local-
mode matching and second in global-mode matching. Each
mode uses 100 RANSAC iterations in the first phase and 400
RANSAC iterations in the second phase, after background
matching.

As we can see from Table 5, both keypoint match-
ing and background matching achieve high recognition
performance, with background matching performing sig-
nificantly better than keypoint matching on small slides.
The improvement is in part attributed to running 400 more
RANSAC iterations - hence we provide the results of the
baseline KP(400) for comparison. Note, however, that this
run is much slower than the other runs because it runs 400 it-
erations on all the frames, as oppose to running those only on
the small slides in the background matching method. More-
over, the background matching method still outperforms the
KP(400) run.

There is a noticeable difference between the full-slide
recognition error on CONF1 (3.10%)and on CONF2 data
set (23.34%). Checking these presentations, the higher num-
ber of errors in CONF2 attributes to the use of many more
videos and animations, some slides with very little content
(including a couple of plain blue slides) and several cases
of duplicated identical slides. For the last, we expect that
by introducing temporal analysis into the matching process,
taking into count the mostly sequential slides order during a
typical presentation, , it will be possible to accurately label
the identical slides.

We further tested the robustness of scene background match-
ing to the choice of the matching threshold m. Figure 5
shows how the number of misses increases when the thresh-
old is higher. The background matching with local keypoint



Frame full-slide small-slide no-slide Total
Similarity NCC1 NCC2 KP NCC1 NCC2 KP NCC1 NCC2 KP NCC1 NCC2 KP
KP(100) 42/258 22/258 8/258 29/76 29/76 27/76 0/327 0/327 0/327 71/611 51/611 35/661

BP(100+400) Local 44/258 27/258 10/258 14/76 13/76 15/76 3/327 3/327 3/327 61/611 43/611 28/661

Table 3: Recognition error/total frames comparisons under two different similarity measures: NCC1 is
without color correction, NCC2 is with color correction, and KP is Keypoint matching (no color correction
is needed).

Dataset Video # full-slide # small-slide # no-slide Total
1 1/33 2/9 0/61 3/103
2 2/76 3/3 0/72 5/151
3 1/37 1/4 0/50 2/91

CONF1 4 0/18 4/6 0/23 4/47
5 2/41 4/12 0/64 6/117
6 2/53 13/42 0/57 15/152

total 8/258 (3.10%) 27/76 (35.52%) 0/327 (0.00%) 35/661(5.29%)
1 14/92 2/3 0/103 16/198
2 9/58 1/1 0/104 10/163

CONF2 3 10/50 0/0 1/90 11/140
4 27/40 1/1 0/61 28/102
5 0/17 0/0 0/52 0/69

total 60/257 (23.34%) 4/5 (80.00%) 1/410 (0.24%) 65/672(9.67%)
1 0/48 9/39 0/66 9/153

UNIV 2 3/54 11/36 1/101 15/191
total 3/102 (2.94%) 20/75 (26.66%) 1/167 (0.59%) 24/344(6.97%)

Table 4: Error rates of the baseline algorithm (i.e., no background matching), marked by the number of
misrecongnized/total slides (error percentile) for full-slide , small-slide and no-slide frames, per each
presentation. #iterations of the 1st RANSAC = 100.

Frame full-slide small-slide no-slide Total
Alg. CONF1 CONF2 UNIV CONF1 CONF2 UNIV CONF1 CONF2 UNIV CONF1 CONF2 UNIV

KP(100) 8/258 60/257 3/102 27/76 4/5 20/75 0/327 1/410 1/167 35/661 65/672 24/344
KP(400) 9/258 56/257 3/102 24/76 4/5 17/75 0/327 1/410 1/167 33/661 61/672 21/344

BP(100+400) Global 8/258 60/257 3/102 25/76 4/5 16/75 0/327 1/410 1/167 33/661 65/672 20/344
BP(100+400) Local 10/258 51/257 3/102 15/76 4/5 12/75 3/327 10/410 1/167 28/661 65/672 16/344

Table 5: Performance comparison of four different algorithms; KP(100) and KP(400) denote the keypoint
matching performance when the RANSAC is allowed for 100 and 400 iterations, respectively. The background
matching, denoted as BP(), was tested twice, once in local-mode matching and second in global-mode match-
ing. Each mode uses 100 RANSAC iterations in the first phase and 400 RANSAC iterations in the second
phase, after background matching. The two modes are discussed in 2.1. Results on 3 different frame types
are shown for the three data sets, CONF1, CONF2 and UNIV. For each method, frame type and data set, the
number of errors/total frames of this class is displayed. The background matching with local search method
outperforms the other methods.
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Figure 5: Algorithm robustness is demonstrated by
repeating the experiment for different values of the
matching acceptance threshold, m, and measuring
the missrecognized small-slide frames. A higher
threshold provides greater confidence in the match-
ing. The background matching with local keypoint
search, BP100+400(Local), outperforms the other
three methods.

search algorithm outperforms all other three variants. It is
nearly insensitive to the value of m, hence providing much
better homographies and stronger matching for small slides
than the alternatives. Changing m has no measurable im-
pact on performance of full-slide matching (for which con-
fidence levels are much higher), nor on no-slide frames clas-
sification (for which m = 6 already produces nearly perfect
classification results, and increasing m only improves it).

6. CONCLUSIONS
We have demonstrated a comprehensive approach to match-

ing slides to presentation videos. Experiments on three data
sets show that the approach is viable for real world applica-
tions. We found that an implementation of keypoint match-
ing together with constrained planar homography tuned to
the application provided a very solid starting point for the
development of our matching system. The unsupervised
scene background matching is a robust and fast way to boost
the performance of RANSAC in difficult cases such as small
slides. We also show that searching initial keypoint match-
ing locally can give more correct correspondences, thus mak-
ing RANSAC more robust. Interestingly, the generally high
performance of this initial version made measuring incre-
mental improvement difficult in some cases.

In this work, we did not exploit the temporal information
such as the usually sequential order of slide changes, which
should be able to further help us resolve ambiguities between
extremely similar or identical slides that often occur in a
presentation. We intend to explore this direction in future
work.
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