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Abstract. We consider strategies for reducing ambiguity in multi-modal
data, particularly in the domain of images and text. Large data sets con-
taining images with associated text (and vice versa) are readily available,
and recent work has exploited such data to learn models for linking vi-
sual elements to semantics. This requires addressing a correspondence
ambiguity because it is generally not known which parts of the images
connect with which language elements. In this paper we first discuss us-
ing language processing to reduce correspondence ambiguity in loosely
labeled image data. We then consider a similar problem of using visual
correlates to reduce ambiguity in text with associated images. Only rudi-
mentary image understanding is needed for this task because the image
only needs to help differentiate between a limited set of choices, namely
the senses of a particular word.

1 Introduction

Recent work suggests that the semantics of images and associated text can be
better learned from data if they are considered together. For example, to build
a system for searching and browsing large data sets, one should take advantage
of available textual information. However, text alone cannot capture all that
is of interest in an image. Furthermore, images with detailed text descriptions
are rare. Thus there has been recent interest in integrating available text with
visual information. This includes providing methods for searching and browsing
which use both image features and text [21,22], and learning links between visual
representations and words from loosely labeled training data [13,25,10,20]. In
this paradigm, the models learned can be used to add labels to new images
(auto-annotate), or even image regions (region-labeling). Alternatively, the links
can be implicit, and simply help queries based on visual descriptors to return
more semantically meaningful results [13,46].
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The underlying key idea in these methods is the observation that images with
associated text have substantive supervisory information that can be exploited.
The main confound is ambiguity. For example, in an image labeled with the
words “tiger”, “water”, and “grass”, it is not known which parts of the image
correspond to which of these words. The work cited above addresses this corre-
spondence ambiguity by building models for the various visual concepts that are
consistent over a number of images. In our example, the single image does not
have sufficient information to determine which words go with which features.
However, additional images with, for example, tigers without water, and water
without tigers, the ambiguity can be reduced. The process of reducing the ambi-
guity by using large training sets is analogous to statistical machine translation
(see figure 3 in chapter XXX).

Now consider a program for automatically labeling our example image based
on a learned model. Labeling images is clearly a difficult task. However, it be-
comes easier if we assume that the labels must come from the associated words.
In our example, this means that instead of choosing among potentially hundreds,
or thousands of words, we only need to choose between three of them.

This constrained labeling of the training data is implicit in some of the learn-
ing approaches mentioned above. However, we find it useful to consider it more
explicitly. Doing so emphasizes that there are two parts of the problem. First,
we wish to migrate semi-supervised data towards supervised data. This is im-
portant if we are to use large, loosely labeled data sets in a more supervisory
fashion. Second, we need to develop algorithms and models that are targeted for
inference on new data. As mentioned above, current approaches deal with the
dependence between these two problems by iteratively solving one and then the
other. However, as the required models and inference become more complex, it
may be beneficial to consider the tasks separately. For example, a simple model
may be able to give a reasonable approximate labeling of training data. This
labeling can then be used to develop inference approaches which might be diffi-
cult to integrate into the initial labeling method. Further, augmenting strategies,
such as integrating supervisory data and language modeling, can be simplified
if we explicitly reduce correspondence ambiguity in the training data first, and
then build models for inference.

In this paper, we will suggest how language models can be used to reduce
correspondence ambiguity. In the work reported so far, language models have
been limited to a “bag of words” model. Further, the words are generally as-
sumed to be nouns. However, different parts of speech such as nouns, adjectives,
and prepositions relate to visual attributes differently. Further, since modern
parts of speech tagging [16, 17] is relatively effective, there is opportunity to bet-
ter exploit associated text through language tools. For example, certain (visual)
adjectives embody specific image region features, and this is assumed to be con-
sistent over multiple objects. If this relationship is known, it can help resolve the
correspondence between words and image regions. Thus one can simultaneously
learn the meaning of words such as “red”, and use natural language analysis to
exploit the occurrence of the modifier “red” to help learn the meaning of “ball”
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from an image annotated with “red ball”. Similarly, if we assume that certain
simple prepositions reflect spatial relations, we should be able to simultaneously
learn the meaning of those prepositions, and exploit that meaning to help learn
the visual representation of nouns being spatially related.

Reciprocally, images can also help disambiguate language meaning. In par-
ticular, words in natural language are ambiguous because they have multiple
meanings (senses). For example, the word “bank” has a number of meanings
including “financial institution” and that suggested by “river bank”. Intuitively,
an image could help determine the senses in a sentence like: “He ate his lunch
by the bank”. All that is required is that we have an image that is more corre-
lated with the correct sense. The image need not even contain a bank, nor do
we need to identify banks; the image features only need to correlate better with
the correct sense as compared with the incorrect sense.

It is important that a complete understanding of the image is not required,
as this would make the approach impractical given the current state of auto-
mated and image understanding. Notice that the disambiguation task is made
much easier because we only need to select among a limited number of choices;
namely the senses of the word being considered. Again, the disambiguation task
is simpler than a complete understanding, but reducing the ambiguity can help
move towards an understanding.

In what follows we first review recently developed approaches for dealing
with multi-modal data with correspondence ambiguity. We then consider two
instances of cross modality disambiguation in further detail. Here we discuss
how adjectives can reduce correspondence ambiguity in images with associated
text. We also propose a method to prune adjectives that are not visual, relative
to our features. Finally, we outline a method for using images to disambiguate
words in natural language.

2 Matching Words and Pictures

A number of methods have been recently developed for predicting words from
image data, based on a large training data of images with associated text. Crit-
ically, the correspondence between particular words and particular visual ele-
ments is not required, as large quantities of such data is not readily available
and expensive to obtain. Current approaches include:

— Simultaneously learning a model and reducing ambiguity, with latent entities
(concepts) competing with each other for image elements and words [13, 25,
10, 20]. This competition means that an image element that is more likely to
be associated with one word (e.g. “tiger”) is less likely to be associated with
another one (e.g. “water”). Included here are translation approaches which
constructs a model for words conditioned on image elements.

— Cross-media relevance models which predict words for entire images (auto-
annotation) based on a statistical match of the image with components in
the training data [35,28].
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— Multiple instance learning which builds a separate classifier for the presence
or absence of each word in the vocabulary in the face of multiple possibilities
of which image element is relevant [38,39,4,52, 53, 5,6]. While not explicitly
developed to do so, these methods support region labeling, and have recently
been evaluated on this task [12].

— Object category recognition efforts [15,29, 27, 48], which are focused on iden-
tifying the existence of an object category, are related to the task of predict-
ing words for images, and could be evaluated in the same way. Here the data
is typically of an instance of an object category, with non-trivial clutter.

Here we review one method from the first approach which we build on below.
Specifically we will consider the dependent model ([8]) with linear topology (no
document clustering). This model owes much to previous work in the text domain
[34] and statistical machine translation [18,19,40].

The general idea, common with many models in this genre, is that image
are generated from latent factors (concepts) which contribute both visual en-
tities and words. The fact that visual entities and words come from the same
source is what enables the model to link them. Because we train the models
without knowing the correspondence, we need an assumption of how multiple
draws from the pool of factors lead to the observed data with ambiguity. The
dependent model is distinguished by assuming that multiple draws are first made
to produce the observed image entities. The same group of factors is then sam-
pled to produced the image words. Because words are generated conditioned on
the observed image, we consider this to be a translation approach.

This approach will work with any characterization of image entities (e.g.
regions with features). However, a key assumption is that image semantics is
compositional, and thus each image typically needs to be described by multiple
visual entities. Without compositionally, we would need to model all possible
combinations of entities. For example, we would have to model tigers on grass,
tigers in water, tigers on sand, and so on. Clearly, one tiger model should be
reused when possible.

In what follows, we use feature vectors associated with image regions obtained
using normalized cuts [45]. For each image region we compute a feature vector
representing color, texture, size, position, shape [8], and color context [11]. As in
earlier work, we will refer to region, together with its feature vector, as a blob.
Our segmentations are limited to grouping pixels together with coherent color
and texture, and thus should be considered very low level.

2.1 An exemplar multi-modal translation model

We model the joint probability of a particular blob, b, and a word w, as

P(w,b) = P(w|l)P(b|1)P(1) (1)
l

where [ indexes over concepts, P(I) is the concept prior, P(w|l) is a frequency
table, and P(b|l) is a Gaussian distribution over features. We further assume a
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diagonal covariance matrix (independent features) because fitting a full covari-
ance is generally too difficult for a large number of features. This independence
assumption is less troublesome because we only require conditional indepen-
dence, given the concept. Intuitively, each concept generates some image regions
according to the particular Gaussian distribution for that concept. Similarly,
it generates one ore more words for the image according to a learned table of
probabilities.

To go from the blob oriented expression (1) to one for an entire image, we
assume that the observed blobs, B, yield a posterior probability, P(l|B), which
is proportional to the sum of P(I|b). Words are then generated conditioned on
the blobs from:

P(w|B) x ZP w|l)P(I|B) (2)

where by assumption

P(I|B) x ZP 1b) (3)

and Bayes rule is used to compute P(I|b) oc P(b|l)P(l).

Some manipulation [9] shows that this is equivalent to assuming that the
word posterior for the image is proportional to the sum of the word posteriors
for the regions:

N
P(w|B) Y P(w|b) (4)
b

We limit the sum over blobs to the largest N blobs (in this work N is six-
teen). While training, we also normalize the contributions of blobs and words
to mitigate the effects of differing numbers of blobs and words in the various
training images. The probability of the observed data, W U B, given the model,
is thus:

maz(Np) maz(Ny)
N.

P(WUB) = H(ZPW ) b H(pru l|B>

beB weW

w

(5)
where max(Ny) (similarly maz(N,,)) is the maximum number of blobs (words)
for any training set image, N (similarly N,,)is the number of blobs (words) for
the particular image, and P(l|B) is computed from (3).

Since we do not know which concept is responsible for which observed blobs
and words in the training data, determining the maximum likelihood values
for the model parameters (P(w|l), P(b|l), and P(l)) is not tractable. We thus
estimate values for the parameters using expectation maximization (EM) [23],
treating the hidden factors (concepts) responsible for the blobs and words as
missing data.

The model generalizes well because it learns about image components. These
components can occur in different configurations and still be recognized. For
example, it is possible to learn about “sky” regions in images of tigers, and then
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predict “sky” in giraffe images. Of course, predicting the word giraffe requires
having giraffes in the training set.

3 Reducing correspondence ambiguity with adjectives

We assume that descriptive text of an image can be parsed into parts of speech
with reasonable accuracy [16,17]. We further assume that the nouns that ad-
jectives bind to can be identified. Finally, in order to be useful, adjectives need
to be wvisual relative to a set of features. Examples of visual adjectives include
color words (e.g. “red”), and texture words (e.g. “furry”). We address pruning
non-visual adjectives from our vocabulary in the next section (§4).
Under these assumptions, it should be clear that adjectives have the potential
to help with correspondence disambiguation. If we are not (yet) able to link a
red ball to a circular red region, but we have the binding “red ball”, and we
have a model for red, then we have evidence that “ball” should link to red image
regions, and not other ones. We assume that if an adjective, a, binds to a noun,
n, then:
P(n|b) « P(bjn) o P(bla) x Pyhg;(alb) (6)

where P, 4; indicates that we use an adjective model. It is conceivable to construct
a process to jointly learns an adjective model and a noun model. However, it is
simpler to compute an adjective model first, using (for example) (5) restricted
to adjectives, and then use (6) as a prior probability for the nouns (6). That
prior is than used with a noun model, such as(5) applied to nouns.

To test the hypothesis that visual adjectives can help reduce correspondence
ambiguity in training data, we constructed a small data by labeling many of
the nouns associated with 1900 Corel 7™ images with one of fifteen adjectives
which were expected to have good visual properties (11 were color words). We
then built a prediction model for the adjectives alone using the model reviewed
above (§2.1). Thus we learned a model that could predict, to a certain extent,
“red” for a red region. We then applied the adjective based posterior to get a
noun prior via the linking of nouns with adjectives. We assumed that most of
the probability mass for this prior should be distributed among the associated
words for that image, but since the annotations often do not cover all blobs, we
allowed 10% of the probability mass for words not in the annotation. We also
build an instance of the same model (§2.1) for nouns. We then combined the
evidence from the noun model and adjective model used to predict the nouns
that they modify.

The results are much as one would expect. Some difficult to characterize
nouns are relatively easy to label given this kind of additional, semi-supervisory,
information. Almost invariably the labeling of the training data was improved
by including the adjective information. Often it was a more reliable source of
information than the noun model. This is likely partly due to the nature of our
“toy” data set, which has more nouns associated with visual adjectives than
would commonly be the case.
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A main use of adjective information is to help label data that is not strongly
correlated with simple visual features. A good example is the car image (Fig-
ure 1). Since cars come in all colors, learning to recognize cars as an object
class by color is not possible. However, color can be used to identify a particular
instance of a car. Several examples can further ensure that that cars are dissoci-
ated from a narrow range of colors. Given the identified examples, we are then
in a better position to construct a car model.

The fact that we chose to learn the meaning of the adjectives from a small,
weakly labeled data set, means that there were some labeling errors due to
the imperfect adjective model. This could be improved by more data, or by
adding some truly supervisory information. A second problem with our current
system is that good labellings based on adjectives are often better than the
combined result. We are currently pursuing better integration of the two sources
of information.

4 Identifying visual words

The above proof of concept relied on having nouns associated with adjectives that
had a good chance of being linked with our features. When we apply the methods
discussed above to larger data sets with free form text, our vocabularies will gain
many entries that have no chance to be linked with visual properties measured
by a given feature set. It is thus reasonable to attempt to prune vocabularies
in advance, removing words that do not have significant correlations with our
features. While is is conceivable that our models can simply absorb these words
without any ill effect, it is more likely that the noise created by words with no
visual properties will be detrimental. At a minimum, the computation cost can
be reduced by excluding such words.

We consider determining the visualness of a word based on a large external
data set that is not necessarily the target data set. While the visualness of a
word is somewhat relative to the data set, many words may not occur frequently
enough in a particular data set that a clear distinction can be made. We want
to keep words that might be subtly visual in our data set, and prune as many
as we can that have little chance of being visual at all.

Thus our approach is to actively seek many images that might be relevant to
each word under consideration, and determine how visual that word is in general.
Fortunately, with web image search engines such as Google Image Search, finding
a large number of images that have a fair chance of being relevant to a given
word is relatively straightforward.

Having selected the images, we face a familiar problem. Even if a word is
relevant to an image in general, it likely correlates with the features of only
a small part of the image. We expect the bulk of any image to be irrelevant
to the word. Hence to estimate whether a word correlates with image features,
we need to estimate which parts of the image are relevant. Not surprisingly,
this requires an iterative algorithm which alternates between determining an



8 Barnard et al.

Fig. 1. Example of using adjectives to reduce correspondence ambiguity in training
data. The upper left image is the original image containing a red car with a green veg-
etation backdrop. It is annotated with “red:automobile red:vehicle red:car exotic drago
ferrari”. The upper right image shows the nouns with maximal posterior probability
for each region, based on the adjective model. Specifically, the red regions in the image
are labeled by one of the nouns linked to “red”. Regions that have low posterior given
“red” are labeled by one of the words not linked to red (e.g. “exotic”). In this example,
all words also refer to the car but this is not known at this point, and by exclusion, the
non red regions get labeled with these other words. The bottom left image shows the
labeling using the noun model alone, but with a strong prior (90%) on choosing among
the associated words. This ensures that most of the words are good words for the image,
but correspondence can be a problem, as is quite noticeable with “automobile” in a tree
region. The bottom right image image shows the combined result. The correspondence
has been enhanced by the adjective, promoting “car” to be the label for the body of
the car. Several other words are reasonable, such as two instances of “trees”. These
words are not in the annotation, but they have sufficiently high posterior to overcome
the prior that tends to restrict words to the ones from the annotation. Finally, it is
clear that the word “exotic” is still ambiguous, due to being in the annotation of many
car images with many backdrops, but having no clear visual properties.
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appropriate characterization for the word, and determining which regions are
relevant.

To implement this we prepare a large Gaussian mixture model for the regions
of a large number of images. A concept is characterized as probability distribu-
tion over the mixture components. We iteratively estimate that distribution and
the whether or not each image region is relevant to the concept. After sufficient
iterations we compute the entropy of the distribution. If that distribution has
low entropy, then we designate the word as visual. Otherwise, the process sug-
gests that it is hard to distinguish the regions linked to the word with from a
random selection of regions. In that case we consider that word not sufficiently
visual, and prune it from the words that we try to link to image features. Some
details follow.

4.1 Data gathering and pre-processing

For each concept (e.g. adjective) we use Google”™ image search to find several
hundred images. As in the previous section, we simplify the data using low level
segmentation. However, due to the volume of data, we segment images with
JSEG [24] instead of normalized cuts, which is more expensive. For all processing
that follows we used the same feature set described above.

4.2 Detecting regions associated with a concept

We process each concept in sequence. For each concept “X” we process the
regions from the associated images, as well as an equal number of randomly
selected other images, providing “non-X” regions. To obtain P(X|r;), which
represents the probability that a region is associated with the concept “X” we
use the following iterative process.

At first, we select “X” regions from the “X” images, and some “non-X” re-
gions from the “non-X” images at random. We then fit a Gaussian mixture model
for the image region features for both “X” and “non-X”", and assign components
of the mixture model according to the following formula:

P =3 Pleslr, X) (7)
=1
= ZP(X'C]',T;X)P(C]') (8)

where c¢; is the j-th component of the mixture model, nx is the number of “X”
regions, and ¥ is the i-th “X” region.

The top m components in terms of pf are regarded as the model of “X” and
the rest are the model of “non-X”. With these models of “X” and “non-X”, we
can compute P(X |r;) for all the regions which come from “X” images. Assuming
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that p1(X|r;) is the output of the model of “X” and p2(nonX|r;) is the output

of the model of “non-X”, given r;, we can obtain P(X|r;) as follows:

p1(X|r;)
p1(X|r;) + p2(nonX|r;)

P(X|r;) = 9)
For the next iteration, we select the top n regions regarding P(X|r;) as “X”
regions and the top n/2 regions regarding P(nonX|r;) as “non-X” regions. Add
n/2 regions randomly selected from “non-X” images to “non-X” regions. In this
way, we mix newly estimated “non-X” regions and randomly selected regions
from “non-X” images after the second iteration. We adopt mixing rather than
using only newly estimated “non-X” regions based on the results of the prelim-
inary experiments. After computing the entropy, we repeat estimation of the
model of “X” and “non-X”, and computation of P(X|r;).

4.3 Computing the entropy of concepts

We estimate the entropy of the image features of all the regions weighted by
P(X|z;) with respect to a generic model for image regions. For this model we
use a Gaussian mixture model (GMM) for fifty thousand randomly selected
regions from all the images. To reduce the impact of initialization in the EM
process, we average the results over kK GMM’s fit with different starting points.
The average probability of image features of “X” weighted by P(X|z;) with
respect to the j-th component of the [-th generic base represented by the GMM
is given by N
X -f0. .
P(X'Cj,l) — w],l Zi:l i(fX,zaej,l)P(Xlrz) (10)
2o P(X|ri)
where fx,; is the image feature of the i-th region of “X”, P(fx ;;0;,;) is the
generative probability of fx ; from the j-th component, w;; is the weight of the
j-th component of the I-th base, and Nx is the number of all the regions which
come from “X” images,
The entropy for “X” is given by

k  Npase
E(X)=7> Y —P(X|c;,1)logy, P(X]c;,1) (11)
=1 j=1

where Npase is the number of the components of the base (250 in our exper-
iments), and k is number of GMM’s with different starting points (5 in our
experiments). We use this entropy as a measure of the visualness of a concept.

4.4 Experiments

We experimented with 150 adjectives which are the 150 most common adjectives
used for indexing images in the Hemera Photo-Object collection. We used each
of these adjectives as the search term for Google Image search. We used the first
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250 web images returned. Thus the entire experiment considered nearly forty
thousand images associated with adjectives.

We used 15 mixture components in (7). Because we expect adjectives to be
associated with visual properties more directly than nouns, we simply use a
single mixture component to model “X” (i.e., m=1).

Figure 2 shows “yellow” images after one iteration. In the figure, the regions
with high probability P(yellow|r;) are labeled as “yellow”, while the regions with
high probability P(non_yellow|r;) are labeled as “non-yellow”. Figure 3 shows
“yellow” images after five iterations. This indicates the iterative region selection
worked well in case of “yellow”.

Table 1 shows the 15 top adjectives and their image entropy. In this case,
the entropy of “dark” is the lowest, so in this sense “dark” is the most “visual”
adjective among the 150 adjectives under the condition we set in this experiment.
Figure 4 shows some of the “dark” images. Most of the region labeled with “dark”
are uniform black ones. Other highly-ranked adjectives, “senior” and “beautiful”
include many human faces, and “visual”, which, interestingly, are not photos but
graphical images such as screen shots of Windows or Visual C. This suggests that
addressing biases due to what images are common on the web may be helpful.

We provide the ranking of color adjectives in Table 1. They are relatively
high, even though images from the Web included many irrelevant images. This
suggests that our pruning approach is promising.

Notice that the method identifies many words which, at first glance, do not
appear to be truly visual. A good example in our results is “professional” which is
ranked relatively high. The connection is through the sampling bias for “profes-
sional sports” which yields low entropy because of a limited number of textures
and backgrounds (e.g. fields and courts) that go with those images. It would seem
to depend on the application as to whether these words are a liability. If the goal
is to help image search, then such associations can be helpful. However, we have
clearly not captured the essence of “professional”, and thus for recognition we
would hope that the ambiguity can be resolved in subsequent steps.

This is conceivable in many cases. In the “professional sports” case, if we
assume relatively rich descriptions and sufficient data, then in the generative
model above, words like “field” and “court” would compete with “professional”
for probability. This can promote “professional” as a more general term that is
less directly associated with local features.

Table 2 lists the 15 adjectives with lowest entropy among the 150 tested. In
case of “religious” (Figure 5), which is ranked as 145-th, the region-adjective
linking did not work well, and the entropy is thus relatively large. This reflects
the fact that the image features of the regions included in “religious” images
have no prominent tendency. Thus we can say that “religious” has no or only a
few visual properties.
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Fig. 2. “Yellow” regions after one iteration. At this stage many of the images do not
have much yellow in them, and there are many labeling errors. For example, the flower
in the top right image is green-blue, as is the region in the third image in the top row.
The region marked yellow in the second image of the second row is white, whereas the
two smaller, un-labeled, regions to either side are in fact yellow.

Fig. 3. “Yellow” regions after five iterations. These images all have significant yellow
regions, and they are generally correctly labeled.

Fig. 4. “Dark” regions after five iterations.
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Table 1. Words with the top 15 entropy Table 2. Words with the bottom 15 en-
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Fig. 5. “Religious” regions after five iterations.

rankings. tropy rankings.

rank | adjective entropy rank | adjective | entropy
1 dark 0.0118 136 medical 2.5246

2 senior 0.0166 137 assorted 2.5279

3 beautiful 0.0178 138 large 2.5488

4 visual 0.0222 139 playful 2.55641

5 rusted 0.0254 140 acoustic 2.5627

6 musical 0.0321 141 elderly 2.5677

7 purple 0.0412 142 angry 2.5942

8 black 0.0443 143 sexy 2.6015

9 ancient 0.0593 144 open 2.6122

10 cute 0.0607 145 religious 2.7242
11 shiny 0.0643 146 dry 2.8531
12 scary 0.0653 147 male 2.8835
13 professional 0.0785 148 patriotic 3.0840
14 stationary 0.1201 149 vintage 3.1296
15 electric 0.1411 150 mature 3.2265

Table 3. Rankings of color adjectives.

(color adjectives)

36
39
46

purple

black
red
blue

yellow

0.0412
0.0443
0.9762
1.1289
1.2827

13
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5 Using pictures to understand language

Links between visual features and words can also be exploited for understanding
text and other documents. The idea is very simple and very familiar — illustra-
tions can help clarify and enhance the meaning of documents. As an initial step
in making this operational in an automatic setting, we have studied the problem
of using images to help disambiguate word senses [14].

Words used in natural language are often ambiguous because language has
evolved so that many words have several distinct meanings (senses). For example,
the word “bank” can mean a financial institution or a step or edge as in “snow
bank” or “river bank”. Words which are spelled the same but have different
meanings (polysemes) confound attempts to automatically understand natural
language.

Because such words are very prevalent, determining the correct sense (word
sense disambiguation) has been identified as an important problem in natural
language processing research. As such, it has been studied by many researchers
leading to a large body of work [7,37,51, 50,32, 3,2,42,43,49].

Since the words are spelled the same, resolving their sense requires consid-
ering their context. A purely natural language based approach considers words
near the one in question. Thus in the bank example, words like “financial” or
“money” are strong hints that the financial institution sense is meant. Interest-
ingly, despite much work, and a number of innovative ideas, doing significantly
better than choosing the most common sense remains difficult [49].

To use our word prediction model for word sense disambiguation, we con-
strain the predicted words to be from the set of senses for the word being ana-
lyzed. In general, when word prediction is constrained to a narrow set of choices
(such as possible senses), reasonable performance is possible. This is the key
point. A very limited understanding of what is in the image can be helpful for
sense disambiguation. All that is required is that the image is more likely to be
associated with the correct sense, compared to a handful of others.

Associated images can help improve document retrieval. Invariably the senses
of the words available in unstructured data are not sense disambiguated. Being
able to automatically reduce the ambiguity should improve the quality of results.

Notice that in this scenario, we assume that the user is willing to indicate
the query term sense. However, the general thrust of the method can take an
implicit role. Specifically, even without sense information, retrieved documents
can be organized on semantic lines for searching, browsing and relevance feedback
based on a combination of words and visual features of associated images. To
the extent that the later are linked to semantics based on training data, the
associated images can help specify text semantics.

5.1 Predicting senses based on visual information

In the context of word sense disambiguation, our vocabulary is assumed to be
sense disambiguated. Formally, we use an extended vocabulary S, which con-
tains the senses of the words in a vocabulary W. Notationally, if the word bank
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€ W then {bank_1, bank.2, ...} € S. Thus, every sense s € S is the sense of
only one word w € W. Once a model has been trained on S, we can use the
annotation process to compute P(s|B). Different than annotation, word sense
disambiguation has the additional characteristic that we are trying to only dis-
tinguish between the senses, s, for a particular word, w, rather than produce a
number of good choices from all of S, which is clearly more difficult.

Thus given a word, w, we assume that senses for all other words should not
be predicted. Operationally we simply take the posterior probability over all
the senses in our vocabulary, and set those not corresponding to w to zero. We
then rescale the posterior so that it sums to one. This computation yields the
probability of a word sense, s, given w, and the visual context, B, which we
denote as P(s|w, B).

5.2 Combining word prediction with text based word sense
disambiguation

The quantity P(s|w, B) can be used as is for word sense disambiguation, and we
provide results for this strategy. It is also natural to combine it with text based
methods, as it seems to provide an orthogonal source of information. Here we
assume that a text based method can provide a second estimate of the probability
P(s|lw, W) for the sense, s, for w, based on the observed words, W (the senses
are not known a priori). We discuss our choice of P(s|w, W) below (§5.3).

We assume that these two estimates are relatively independent, which gives
the following simple expression for combining them:

P(s|lw, B,W) x P(s|lw,B)P(s|lw, W). (12)

5.3 Text based word sense disambiguation

The probability P(s|w, W) in (12) is assumed to come from a traditional text
based word sense disambiguation algorithm. We report results using the state of
the art SMUaw algorithm [43]. This algorithm, and a recent derivative, Sense-
Learner [41]), have performed very well in word sense disambiguation challenges
[26,1]. We modified the SMUaw algorithm to give softer output so that it would
work better with our approach ([14]).

5.4 ImCor

To develop and test methods for using images to disambiguate text, one requires
a data set that has images linked to sense disambiguated text. As no such data
was readily available, we developed a new corpus, ImCor with these properties.
This data is available for research purposes [36].

To construct ImCor we linked images from the Corel’ data set to pas-
sages from the already sense-attributed corpus, SemCor [43,47,33,44]. SemCor,
short for the WordNet Semantic Concordance [31], consists of 25% of the Brown
corpus [30] files which have been fully tagged with part-of-speech and is sense
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disambiguated. Since the SemCor files contain sizable text passages, we selected
the relevant subset of a file to link with each image. Two participants carefully
linked 1633 images with an overlap of 1/6 to verify consistency. We then au-
tomatically expanded the set to 20,153 image/text pairings by exploiting the
semantic redundancy in the Corel”™ data, by linking images that shared two
or more keywords with the manually linked images.

5.5 Experiments

To test our approach we created twenty different splits of ImCor into training
and testing sets (90% training, 10% testing). Since there are a number of images
which are used multiple times, we took care to ensure that all duplicate images
were considered to be in either the training or testing sets for a given run. For
each split, we then determined the vocabulary from the training data. First we
removed stop words from the corpus. Then we eliminated word senses which
occurred less than 20 times. If this produced images without words, they were
removed, and the vocabulary was recomputed, iteratively, if needed. Typical
vocabulary sizes were 3800 senses from about 3100 sense blind words.

We trained the word prediction model (§2) on the combined image sense data.
We used the features described above for the 16 largest regions. If there were
fewer than 16 regions, the we used all of them. We then applied the model to
the test data to predict senses according to (4), by restricting word prediction to
the sense for each word being processed as described above. We them combined
visual and textual cues as described in §5.2.

We computed performance using only documents which have at least one
ambiguous word. We used the performance of the empirical distribution of the
training set for a baseline. Baseline performance on sense prediction was roughly
60%. This baseline provides a harsher standard than the simple “most common
sense” method, as the empirical distribution gives the common sense for the em
particular corpus.

In Table 4 provides the average absolute sense prediction scores over the 20
samples. More detailed results have been reported elsewhere [14]. The results of
combining the two sources of information are very promising. The performance
exceeds that of either method alone, which was what we were trying to achieve.
On the large data set we were able to increase performance over the baseline by
nearly 20% yielding nearly 80% absolute performance. In the small data set, the
performance increase was more modest, yielding 5% improvement. We emphasize
that our domain was constructed somewhat artificially to test our ideas, and that
some of the improvement going from the small (seed) data set to the larger one is
likely due to the system taking advantage of the structure of the Corel’™ data.
However, even in the seed data case, where there was only limited training data
(but the corpus was more pure), including image data produced a statistically
significant improvement in word sense disambiguation performance.
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Data set Minimum Baseline Text only us-|Image only |Combined
sense count ing [43] (using (12))

Full 20 0.615 0.683 0.791 0.817

Seed 20 0.571 0.693 0.687 0.741

Table 4. Word sense prediction results. The first row is for the extended ImCor data
set (20,153 text passages paired with images). The second row shows the result using
the manually produced seed data set (1,633 pairs), even though the data is a bit sparse
for our learning method. The numbers tabulated are the fraction of times the sense
was correctly chosen. Every document processed has at least one ambiguous word.
Some unambiguous can accompany those, and all algorithms score correctly on them
by construction. All results are the average of 20 different splits of training and testing.
The error, as estimated from the variance over the 20 test/training splits, is about 0.003
for the first row, and about 0.01 for the second row. tests.

6 Conclusion

Data with multiple modalities present great opportunities to learn semantics
beyond what is possible considering the modes separately. In general, we will be
more successful if we combine information from all available sources. We have
presented several examples for doing this in the case of images with associated
text and vice versa.

We have demonstrated how language structure can help reduce correspon-
dence ambiguities in loosely labeled data. In particular, adjectives extracted
from text can be help push loosely labeled data towards labeled data. Such an
approach is important because many current methods for learning recognition
rely on non-negligible quantities of data. Since labeled data is rare, but loosely
labeled data is relatively easy to acquire, strategies for reducing the ambiguity
of the labeling are clearly useful. Because these efforts are on a large scale, we
have also studied the problem of how to prune words that are not visual given
a feature set. Such pre-processing will be helpful for developing systems that
learn for large scale data with free form text. In particular, the method ad-
dresses the problem that noise from non-visual words can overwhelm attempts
to automatically learn the meaning of others that have more substantive links
to features.

We have also summarized recent work on using images to help the under-
standing of natural language. In particular, correlations with visual attributes
can help disambiguate word senses. Because the word prediction machinery is
applied to merely choosing among the various senses of one word, visual infor-
mation can be quite helpful, despite current limitations in image understanding.

We remark that it is also the limited number of choices that makes obtaining
reasonable labeled data from loosely labeled image data reasonable. Here we only
need to differentiate among the visual words associated with the images, which
is generally a relatively small set compared to the entire vocabulary. Once the
correspondence ambiguity has been reduced, we are then in a better position to
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learn more sophisticated processes and models which are necessary for inference
on novel data.
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