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Abstract— We quantify the mutual information between words
and images or their components in the context of a recently devel-
oped model for their joint probability distribution. We compare
the results with estimates of human level performance, exploiting
a methodology for evaluating localized image semantics.

We also report results of using information theoretic measures
to determine whether or not a word is “visual”. In particular, we
examine the entropy of image regions likely to be associated with
a candidate visual word. We propose using such an approach to
prune words that do not link to given features. This can reduce
the difficulties of linking of words and images in large scale data
sets.

I. INTRODUCTION

Intuitively there is much mutual information between im-
ages and associated text. For example, given an image, we are
not overly surprised by relevant keywords. In this work we
quantify the mutual information suggested by this scenario,
using a recently developed model for the joint probability of
words and images and their components [1], [2], [3]. We con-
sider both the mutual information between entire images and
words, and image regions and words. We compare the results
with estimates of human level performance, exploiting recent
methodology for evaluating localized image semantics [4].
This gives an alternative characterization of these models,
different from the word prediction performance measures used
so far [1], [2], [3]-

In a different application, we consider that the entropy of
image regions associated with a word can be indicative of
how “visual” that word is. Thus we can apply information
theoretic measures to determine whether a word is “visual” [5].
This is important because the automated processing of large
image data sets involves potentially very large vocabularies,
but many words associated with images are not very useful for
visual representation. This suggests a large scale data mining
exercise to determine which words are likely to be useful for
automatically annotating images based on visual properties.

Il. ESTIMATING THE MUTUAL INFORMATION OF WORDS
AND IMAGES OR THEIR COMPONENTS
We compute the mutual information of random variables for
words, W, and blobs, B, by the standard formula [6]:
I(W;B) = H(W) — H(W|B) )

where H(X) is the entropy of the random variable X. We
interpret this informally as the reduction in entropy of the
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words, once we see the image or image component. Mutual
information is symmetric, and we equally have

I(W;B) = H(B) — H(B|W). @)

To quantify the mutual information of words and pictures (§1V)
we apply form (1), and for the application to finding “visual”
words (§V) we use form (2) — in fact, since we only need to
rank the words, we use only H(B|W).

We compute the required probabilities based on models for
their joint probability described below (§111-A). These models
are quite limited in effectiveness, reflecting that the current
state of the art has a long way to go. Hence one motivation
for this work is to compare the mutual information computed
from such models with similar quantities based on human level
recognition.

An important distinction is the mutual information between
words and images, taken as a whole, and words and image
regions. Most words associated with images refer to specific
parts within the image. Further, we assume that systems that
automate image understanding must embody image composi-
tionally. However, the models of the genre outlined below are
typically trained on data where the nature of the composition is
hidden by correspondence ambiguity. For example, the training
set used for the first set of experiments consists of images
with roughly five keywords, but we are ignorant of which
image parts go with which keywords. We posit that even if
the goal is simply image annotation — suitable for indexing
application — the reduction of uncertainty in correspondence
is a key issue for generalization. For example, an algorithm
that confuses horses and grass will do fine as long as horses
and grass always co-occur as they might in a training set. Thus
in this work we set out to measure mutual information on both
image annotation and region labeling.

A. Ground truth semantic entropy

For the ground truth word distributions for entire images
we remain consistent with previous work and assume that the
keywords provide a reasonable empirical estimate [3]. This
ignores issues of completeness of the keyword set relative to
the vocabulary, and relations among the words. For example,
in a tiger image, should the word “cat” be treated differently
than the word “tiger”?

In the case of image regions, an additional complexity is
that, due to imprecise segmentation, each region will generally



cover some subset of the image area relevant to several seman-
tic entities. We have addressed some of these issues in recent
work on the evaluation of localized image semantics [4]. That
work provides a method to compute, for a given segmentation,
a distribution of weights over the words that quantifies the
reward for assigning that word for that region. The method
uses WordNet [7] to establish a protocol for scoring related
words. For example, “tiger” is rewarded more than“cat”, with
the proportion set so that blind guessing of either one will give
the same expected value of the overall score.

For the experiments in this paper, we assume that these
weights are proportional to a good ground truth probability
distribution. Further, the sum of these scores give a weight
encoding the proportion of the image semantics attributed
to that region. We use this weighting to compute averages
over regions to mitigate somewhat the impact of the particular
segmentation algorithm. The results using straight averages are
substantively similar.

I1l. MODELING THE JOINT PROBABILITY OF WORDS AND
IMAGE REGIONS

Recent work suggests that relatively simple approaches can
usefully model the joint probability distribution of image
region features and associated words [1], [2], [3], [8]. [9],
[10]. Using regions or other localized features makes sense
because image semantics are largely dependent on composi-
tional elements within them such as objects and backgrounds.
These models are trained using large data sets of images
with associated text. Critically, the correspondence between
particular words and particular visual elements is not required,
as large quantities of such data is not readily available and
expensive to create.

The general idea, shared by many variants of the approach,
is that image are generated from latent factors (concepts)
which contribute both visual entities and words. The fact that
visual entities and words come from the same source is what
enables the model to link them. Because we train the models
without knowing the correspondence, we need an assumption
of how multiple draws from the pool of factors lead to the
observed data. The model detailed below assumes that multiple
draws are first made to produce image entities, and then the
same group of factors is sampled to produce the image words.

Note that this implements the key assumption that image
semantics is compositional, and thus each image typically
needs to be described by multiple visual entities. Without
compositionally, we would need to model all possible com-
binations of entities. For example, we would have to model
tigers on grass, tigers in water, tigers on sand, and so on.
Clearly, one tiger model should be reused when possible.

In what follows, we use feature vectors associated with
image regions obtained using normalized cuts [11]. For each
image region we compute a feature vector representing color,
texture, size, position, shape [12], and color context [13]. We
refer to region, together with its feature vector, as a blab.

A. An exemplar multi-modal tranglation model

We model the joint probability of a particular blob, b, and
a word w, as

pru (b)) P(1) A3)

where [ indexes over concepts, P(l) is the concept prior,
P(w|l) is a frequency table, and P(b|!) is a Gaussian distri-
bution over features. We further assume a diagonal covariance
matrix (independent features) because fitting a full covariance
is generally too difficult for a large number of features.
This independence assumption is less troublesome because
we only require conditional independence, given the concept.
Intuitively, each concept generates some image regions accord-
ing to the particular Gaussian distribution for that concept.
Similarly, it generates one ore more words for the image
according to a learned table of probabilities.

To go from the blob oriented expression (3) to one for an
entire image, we assume that the observed blobs, B, yield a
posterior probability, P(I|B), which is proportional to the sum
of P(I|b). Words are then generated conditioned on the blobs
from:

Z P(w|)P

P(w|B) (I|B) )

where by assumption
P(l|B) < Y _ P(I|b) (5)
b

and Bayes rule is used to compute P(I|b) o< P(b|l)P(1).

Some manipulation [14] shows that this is equivalent to
assuming that the word posterior for the image is proportional
to the sum of the word posteriors for the regions:

P(w|B) x ZP w|b) (6)

We limit the sum over blobs to the largest N blobs (in this
work N is sixteen). While training, we also normalize the
contributions of blobs and words to mitigate the effects of
differing numbers of blobs and words in the various training
images. The probability of the observed data, W U B, given
the model, is thus:

P(W UB) = P(B)P(W|B) @)
where
ma;(bNb)
=11 <ZP (b)) P > (8)
beB
and

maw(Nay)
Ny

<ZP (w|l)P l|B> C)

Here maxz(Ny) (similarly maz(N,,)) is the maximum number
of blobs (words) for any training set image, N, (similarly

PW|B) = []

wew



N,)is the number of blobs (words) for the particular image,
and P(l|B) is computed from (5).

Since we do not know which concept is responsible for
which observed blobs and words in the training data, determin-
ing the maximum likelihood values for the model parameters
(P(w|l), P(b]l), and P(l)) is not tractable. We thus estimate
values for the parameters using expectation maximization
(EM) [15], treating the hidden factors (concepts) responsible
for the blobs and words as missing data.

The model generalizes well because it learns about image
components. These components can occur in different config-
urations and still be recognized. For example, it is possible to
learn about “sky” regions in images of tigers, and then predict
“sky” in giraffe images. Of course, predicting the word giraffe
requires having giraffes in the training set.

IV. EXPERIMENTS

We trained the above model on a set of 26,078 Corel images.
The vocabulary size was 509 words. The number of mixture
components was 2000. We report results for the 1014 images
for which we have ground truth region labels. These images
were held out from training. Naturally, where the results reflect
model fit, the training data results were a little better, but not
substantively.

For the first experiment (Table 1), we estimated the quan-
tities H(W') and H(W|B) averaging over the image set to
estimate the marginal P(W). This gives similar results to
simply using the empirical word distribution, but we prefer
marginalizing in the same context of the computation of
H(W|B) to reduce biases in the mutual information estimate.
With this protocol, we found relatively little mutual informa-
tion (0.63).

In the second experiment (Table 1), we forced the word
posterior for each image to have mass only on the observed
keywords. This gives ground truth quantities that are compa-
rable with those in the previous experiment. Not surprisingly,
the conditional entropy (2.42) reflects the number of keywords
that we have for each image (typically in the range of 3 to 5).
The mutual information here was 3.23.

Clearly there is a large difference between our model and the
“oracle”. To further compare the two processes, we computed
the average KL divergence between the word posterior distri-
butions and the observed image word distributions, finding it to
be 4.27. As a comparison, the average KL divergence between
the overall word empirical distribution and the observed image
word distributions is 5.50. This is consistent with results
reported elsewhere [3] — our models consistently perform
somewhat better than chance, but we have a long way to go.

In the third experiment (Table I11), we computed quantities
similar to those in the first, but now entropy was computed
using probability distributions conditioned on only one blob.
Interestingly, we found that our model supported substantively
more mutual information (2.64) between regions and words
than between images and words. Recall that the model ex-
plicitly represents the joint probability of words and regions,
and that we used a heuristic for producing image word

TABLE |
THE MUTUAL INFORMATION BETWEEN ENTIRE IMAGES AND OUR
VOCABULARY WORDS COMPUTED BASED ON THE MODE DESCRIBED IN
THE TEXT (§111-A)

[(EW) [ BW[B) [ I(W;B) |
[ 732 | 669 | 063 |

TABLE Il
THE MUTUAL INFORMATION BETWEEN ENTIRE IMAGES AND OUR
VOCABULARY WORDS COMPUTED USING THE IMAGE KEYWORDS.

[(EW) [ BW[B) [ I(W;B) |
[ 565 | 242 | 323 |

TABLE Il
THE MUTUAL INFORMATION BETWEEN IMAGE REGIONS AND OUR
VOCABULARY WORDS COMPUTED FROM THE MODEL.

[(EW) [ BW[B) [ I(W;B) |
[ 701 | 437 | 264 |

TABLE IV
THE MUTUAL INFORMATION BETWEEN IMAGE REGIONS COMPUTED FROM
THE MODEL, BUT GIVEN THE IMAGE WORDS.

[(HW) [ HW|B) | I(W;B) |
[ 500 | 060 [ 440 |
TABLE V
THE MUTUAL INFORMATION BETWEEN IMAGE REGIONS COMPUTED FROM
THE “GROUND TRUTH” DISTRIBUTION OF THE WORDS FOR THAT REGION.
[(HW) [ HW|B) | I(W;B) |
[ 663 | 153 | 510 |

posteriors from region word posteriors. Image word posteriors
are necessary both for training with correspondence ambiguity,
as well as image annotation. These finding suggest that we
may be able to improve the heuristic.

In a fourth experiment (Table IV), we constrained the
region word posterior to have mass only for words that were
associated with the image. The remaining uncertainty is a
combination of correspondence ambiguity, and mismatches
between keywords and what is depicted in regions. In this case
the mutual information was very high (4.40). More striking
was the low value of the conditional entropy (0.60).

In our final experiment (Table V) we computed the mutual
information using the region ground truth (5.10), and here the
conditional entropy was 1.53. A critical observations is that
this number includes uncertainty due to segmentation errors
which are very prevalent, as segmentation along semantic lines
is very difficult. The substantially lower conditional entropy in
the fourth experiment suggests to us that our model is perhaps
loosing too much information, and perhaps its power should
be increased.

V. FINDING VISUAL WORDS

We have further applied information theoretic measures to
quantify the “visualness” of words. In particular, we have



proposed using the entropy of image regions likely associated
with a given word as a measure of “visualness” [5]. We would
like determine “visualness” on a large scale to support internet
scale linking of pictures and words. Given the extensive
vocabulary that this implies, it makes sense to investigate
which words are good candidates for success. Thus we see the
first immediate application of this work as a tool for pruning
large vocabularies to exclude the many words that are not
visual, relative to our features.

We begin by using using Google Image Search to find
a large number of images that have a fair chance of being
relevant to a given word. Having selected the images, we face
a familiar problem. Even if a word is relevant to an image in
general, it likely correlates with the features of only a small
part of the image. We expect the bulk of any image to be
irrelevant to the word. Hence to estimate whether a word
correlates with image features, we need to estimate which
parts of the image are relevant. Not surprisingly, this requires
an iterative algorithm which alternates between determining
an appropriate characterization for the word, and determining
which regions are relevant.

To implement this we prepare a large Gaussian mixture
model for the regions of a large number of images. A
concept is characterized as probability distribution over the
mixture components. We iteratively estimate that distribution
and whether or not each image region is relevant to the
concept. After sufficient iterations we compute the entropy of
the distribution. If that distribution has low entropy, then we
designate the word as visual. Otherwise, the process suggests
that it is hard to distinguish the regions linked to the word
from a random selection of regions. In that case we consider
that word not sufficiently visual, and prune it from the words
that we try to link to image features. Details are available
elsewhere [5].

A. Experiments

We experimented with the 150 most common adjectives
used for indexing images in the Hemera Photo-Object col-
lection. We used each of these adjectives as the search term
for Google Image search. We used the first 250 web images
returned.

Figure 1 shows “yellow” images after one iteration. In
the figure, the regions with high probability P(yellow|r;) are
labeled as “yellow”, while the regions with high probability
P(non_yellow|r;) are labeled as “non-yellow”. Figure 2 shows
“yellow” images after five iterations. This indicates the itera-
tive region selection worked well in case of “yellow”.

Table VI shows the 15 top adjectives and their image
entropy. In this case, the entropy of “dark” is the lowest, so
in this sense “dark” is the most “visual” adjective among the
150 adjectives under the condition we set in this experiment.
Figure 4 shows some of the “dark” images. Most of the regions
labeled with “dark” are uniform black ones.

Interestingly, the method identifies many words which, at
first glance, do not appear to be truly visual. A good example
in our results is “professional” which is ranked relatively high.

Fig. 1. “Yellow” regions after one iteration. At this stage many of the images
do not have much yellow in them, and there are many labeling errors. For
example, the flower in the top right image is green-blue, as is the region in
the third image in the top row. The region marked yellow in the second image
of the second row is white, whereas the two smaller, un-labeled, regions to
either side are in fact yellow.

Fig. 2. “Yellow” regions after five iterations. These images all have significant
yellow regions, and they are generally correctly labeled. The entropy of the
yellow regions, as modeled by a Gaussian mixture over features, is relatively
low compared with background or random regions. Hence the system picks
out “yellow” as a visual word.

The connection is through the sampling bias for “professional
sports” which yields low entropy because of a limited number
of textures and backgrounds (e.g. fields and courts) that go
with those images. It depends on the application as to whether
such words are a liability.

Table VII lists the 15 adjectives with lowest entropy among
the 150 tested. In case of “religious” (Figure 3), which is
ranked as 145-th, the region-adjective linking did not work
well, and the entropy is thus relatively large. This reflects
the fact that the image features of the regions included in
“religious” images have no prominent tendency. Thus we can
say that “religious” has no or only a few visual properties.

Fig. 3. “Religious” regions in images from the web gathered by using the
word “religious”. There is little obvious pattern of difference between the
two kinds of regions, consistent with the notion that our low level features
are not likely to be able to represent the meaning of “religious”. There is little
difference in the entropy between the regions deemed ‘religious” and those
deemed“non-religious” — both are large. Thus the method denotes “’religious”
as a non-visual word given the features.



Fig. 4.

“Dark” regions in images from the web gathered by using the word
“dark”. “Dark” regions are identified as being dark, which means that they
have little variance in color or texture on an absolute scale. Hence, taken as a
group, their entropy, as measured in the context of a Gaussian mixture model
over features, is relatively low. Thus the method denotes “’dark” as a visual
word.

VI. CONCLUSION

We have applied standard information theory methods to
provide some insight into the task of building systems which
automatically link words to images and words to image
regions. In particular, information theoretic measures appear
to quite useful for thinking about the relation between image
annotation and region labeling. The former seems to be equiv-
alent to the later with added correspondence ambiguity, but we
do not have a clear theory on how these two processes should
relate in the context of algorithm building. Complications
include segmentation errors and vocabulary issues. The work
presented in this paper suggests that useful quantification
of the components of uncertainty can be achieved through
information theory.

We have further used information theory measures methods
to quantify the “visualness” of words. This yields a simple
method to prune large vocabularies of words that are not
visual, given our features. In the domain of linking words and
pictures, such non-visual words increase computation burden,
and complicate already difficult model fitting and selection.
Thus a method to automatically remove them makes sense.
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