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Abstract— We quantify the mutual information betweenwords
and imagesor their componentsin the contextof a recentlydevel-
oped model for their joint probability distrib ution. We compare
the resultswith estimatesof human level performance, exploiting
a methodology for evaluating localized image semantics.

We alsoreport resultsof using information theoretic measues
to determine whether or not a word is “visual”. In particular, we
examinethe entropy of imageregionslik ely to be associatedwith
a candidate visual word. We proposeusing such an approachto
prune words that do not link to given features.This can reduce
the dif culties of linking of words and imagesin large scaledata
sets.

|. INTRODUCTION

Intuitively thereis much mutual information betweenim-
agesandassociatedext. For example,givenanimage,we are
not overly surprisedby relevant keywords. In this work we
guantify the mutual information suggesteddy this scenario,
using a recently developedmodel for the joint probability of
wordsandimagesandtheir component$1], [2], [3]. We con-
sider both the mutual information betweenentire imagesand
words,andimageregionsandwords. We comparethe results
with estimatesof humanlevel performanceexploiting recent
methodologyfor evaluating localized image semantics[4].
This gives an alternatve characterizationof these models,
differentfrom the word predictionperformancaneasuresised
sofar[1], [2], [3]-

In a different application,we considerthat the entrofy of
image regions associatedvith a word can be indicative of
how “visual” that word is. Thus we can apply information
theoreticmeasureso determinevhetheraword s “visual” [5].
This is importantbecausehe automatedprocessingof large
image data setsinvolves potentially very large vocahularies,
but mary wordsassociatedavith imagesarenot very usefulfor
visual representationThis suggests large scaledatamining
exerciseto determinewhich words are likely to be usefulfor
automaticallyannotatingimagesbasedon visual properties.

Il. ESTIMATING THE MUTUAL INFORMATION OF WORDS
AND IMAGES OR THEIR COMPONENTS

We computethe mutualinformationof randomvariablesfor
words, W, andblobs, B, by the standardformula [6]:

@)

where H(X) is the entropy of the random variable X. We
interpret this informally as the reductionin entropy of the

Keiji Yanai
Departmeniof ComputerScience
The University of Electro-Communications
1-5-1 ChofugaokaChofu-shi
Tokyo, 182-8585JAPAN
Email: yanai@cs.uec.ac.jp

words, oncewe seethe image or image componentMutual
informationis symmetric,and we equally have

)

To quantifythe mutualinformationof wordsandpictures( 1V)
we apply form (1), andfor the applicationto nding “visual”
words( V) we useform (2) — in fact, sincewe only needto
rank the words, we useonly

We computethe requiredprobabilitiesbasedon modelsfor
their joint probability describedoelow ( 11I-A). Thesemodels
are quite limited in effectivenesse ecting that the current
stateof the art hasa long way to go. Henceone motivation
for this work is to comparethe mutualinformation computed
from suchmodelswith similar quantitiesbasecon humanlevel
recognition.

An importantdistinctionis the mutualinformationbetween
words and images,taken as a whole, and words and image
regions. Most words associatedvith imagesrefer to speci ¢
partswithin the image.Further we assumehat systemsthat
automateémage understandingnust embodyimage composi-
tionally. However, the modelsof the genreoutlinedbelow are
typically trainedon datawherethe natureof the compositionis
hiddenby correspondencambiguity For example thetraining
setusedfor the rst setof experimentsconsistsof images
with roughly ve keywords, but we are ignorant of which
image parts go with which keywords. We posit that even if
the goal is simply image annotation— suitablefor indexing
application— the reductionof uncertaintyin correspondence
is a key issuefor generalizationFor example,an algorithm
that confuseshorsesand grasswill do ne aslong as horses
andgrassalwaysco-occurasthey mightin atrainingset. Thus
in this work we setout to measurenutualinformationon both
imageannotationandregion labeling.

A. Groundtruth semanticentropy

For the ground truth word distributions for entire images
we remainconsistentwith previous work and assumehatthe
keywords provide a reasonableempirical estimate[3]. This
ignoresissuesof completenessf the keyword setrelative to
the vocahulary, andrelationsamongthe words. For example,
in a tiger image,shouldthe word “cat” be treateddifferently
thanthe word “tiger”?

In the caseof image regions, an additional compleity is
that,dueto imprecisesggmentationgachregion will generally



cover somesubsebf theimagearearelevantto severalseman-
tic entities.We have addressedomeof theseissuesin recent
work on the evaluationof localizedimagesemanticg4]. That
work providesa methodto compute for a givensegmentation,
a distribution of weights over the words that quanti es the
reward for assigningthat word for that region. The method
usesWordNet [7] to establisha protocol for scoringrelated
words. For example,“tiger” is rewardedmorethan“cat”, with

the proportionsetsothatblind guessingf eitheronewill give
the sameexpectedvalue of the overall score.

For the experimentsin this paper we assumethat these
weights are proportionalto a good ground truth probability
distribution. Further the sum of thesescoresgive a weight
encodingthe proportion of the image semanticsattributed
to that region. We use this weighting to compute averages
over regionsto mitigate somavhattheimpactof the particular
segmentatioralgorithm.Theresultsusingstraightaveragesare
substantiely similar.

I1l. MODELING THE JOINT PROBABILITY OF WORDS AND
IMAGE REGIONS

Recentwork suggestshatrelatively simpleapproachesan
usefully model the joint probability distribution of image
region featuresand associatedvords [1], [2], [3], [8], [9],
[10Q]. Using regions or other localized featuresmakes sense
becausemage semanticsare largely dependenbn composi-

tional elementswithin themsuchas objectsand backgrounds.

These models are trained using large data sets of images
with associatedext. Critically, the correspondencéetween
particularwordsandparticularvisual elementds not required,
as large quantitiesof such datais not readily available and
expensve to create.

The generalidea, sharedby mary variantsof the approach,
is that image are generatedfrom latent factors (concepts)
which contribute both visual entitiesand words. The fact that
visual entitiesand words comefrom the samesourceis what
enableshe modelto link them.Becausewe train the models
without knowing the correspondenceaye needan assumption
of how multiple draws from the pool of factorslead to the
obsereddata.Themodeldetailedbelon assumeghatmultiple
draws are rst madeto produceimage entities,and then the
samegroupof factorsis sampledo producetheimagewords.

Note that this implementsthe key assumptionthat image
semanticsis compositional,and thus each image typically
needsto be describedby multiple visual entities. Without
compositionally we would needto model all possiblecom-
binationsof entities. For example,we would have to model
tigers on grass,tigers in water, tigers on sand,and so on.
Clearly, onetiger model shouldbe reusedwhen possible.

In what follows, we use feature vectors associatedwith
imageregions obtainedusing normalizedcuts [11]. For each
imageregion we computea featurevectorrepresentingolor,
texture, size, position, shape[12], and color contet [13]. We
refer to region, togetherwith its featurevector asa blob.

A. An exemplarmulti-modaltranslationmodel

We modelthe joint probability of a particularblob, , and
aword , as

®3)

where indexes over concepts, is the conceptprior,
is a frequengy table,and is a Gaussiardistri-
bution over features We further assumea diagonalcovariance
matrix (independenfeatures)ecausetting afull covariance
is generally too dif cult for a large number of features.
This independenceassumptionis less troublesomebecause
we only requireconditionalindependencegiven the concept.
Intuitively, eachconcepigeneratesomeimageregionsaccord-
ing to the particular Gaussiandistribution for that concept.
Similarly, it generatesone ore more words for the image
accordingto a learnedtable of probabilities.

To go from the blob orientedexpression(3) to one for an
entire image,we assumethat the obsered blobs, , yield a
posteriorprobability; , whichis proportionalto the sum

of . Words arethengeneratectonditionedon the blobs
from:

4)
whereby assumption

®)

and Bayesrule is usedto compute .

Some manipulation[14] shaws that this is equivalent to
assuminghatthe word posteriorfor the imageis proportional
to the sumof the word posteriorsfor the regions:

(6)

We limit the sum over blobsto the largestN blobs (in this
work N is sixteen). While training, we also normalize the
contributions of blobs and words to mitigate the effects of
differing numbersof blobsandwordsin the varioustraining

images.The probability of the obsered data, , given
the model, is thus:

)
where

8)
and

)
Here (similarly )) is the maximumnumber

of blobs (words) for ary training set image, (similarly



)is the numberof blobs (words) for the particularimage,
and is computedfrom (5).

Since we do not know which conceptis responsiblefor
which obsenedblobsandwordsin thetrainingdata,determin-
ing the maximumlik elihood valuesfor the model parameters
( , , and ) is not tractable.We thus estimate
values for the parametersusing expectation maximization
(EM) [15], treatingthe hiddenfactors(concepts)esponsible
for the blobsandwords as missingdata.

The model generalizesvell becauset learnsaboutimage
componentsThesecomponentganoccurin differentcon g-
urationsandstill be recognizedFor example,it is possibleto
learnabout“sky” regionsin imagesof tigers,andthenpredict
“sky” in giraffe images.Of course predictingthe word giraffe
requireshaving giraffesin the training set.

IV. EXPERIMENTS

We trainedtheabose modelon asetof 26,078Corelimages.
The vocahlilary size was 509 words. The numberof mixture
componentsvas 2000. We reportresultsfor the 1014images
for which we have groundtruth region labels. Theseimages
wereheldout from training. Naturally, wheretheresultsre ect
model t, the training dataresultswerea little better but not
substantiely.

For the rst experiment(Tablel), we estimatedthe quan-
tities and averagingover the image setto
estimatethe mamginal P(W). This gives similar results to
simply using the empirical word distribution, but we prefer
mauginalizing in the same context of the computation of

to reducebiasesin the mutualinformationestimate.
With this protocol, we found relatively little mutual informa-
tion (0.63).

In the secondexperiment(Table Il), we forced the word
posteriorfor eachimageto have massonly on the obsened
keywords. This gives groundtruth quantitiesthat are compa-
rablewith thosein the previous experiment.Not surprisingly
the conditionalentropy (2.42)re ects the numberof keywords
thatwe have for eachimage(typically in the rangeof 3 to 5).
The mutualinformation herewas 3.23.

Clearlythereis alargedifferencebetweerour modelandthe
“oracle”. To further comparethe two processesye computed
the averageKL divergencebetweenthe word posteriordistri-
butionsandthe obsenedimageword distributions, nding it to
be4.27.As acomparisonthe averageKL divergencebetween
theoverallword empiricaldistribution andthe obsenedimage
word distributions is 5.50. This is consistentwith results
reportedelsavhere [3] — our models consistentlyperform
somavhat betterthan chance but we have a long way to go.

In the third experiment(Tablelll), we computedquantities
similar to thosein the rst, but now entropy was computed
using probability distributions conditionedon only one blob.
Interestingly we found thatour modelsupportedsubstantiely
more mutual information (2.64) betweenregions and words
than betweenimagesand words. Recall that the model ex-
plicitly representshe joint probability of words and regions,
and that we used a heuristic for producing image word

TABLE |
THE MUTUAL INFORMATION BETWEEN ENTIRE IMAGES AND OUR
VOCABULARY WORDS COMPUTED BASED ON THE MODE DESCRIBED IN
THE TEXT ( 111-A)

TABLE Il
THE MUTUAL INFORMATION BETWEEN ENTIRE IMAGES AND OUR
VOCABULARY WORDS COMPUTED USING THE IMAGE KEYWORDS.

TABLE 1lI
THE MUTUAL INFORMATION BETWEEN IMAGE REGIONS AND OUR
VOCABULARY WORDS COMPUTED FROM THE MODEL.

TABLE IV
THE MUTUAL INFORMATION BETWEEN IMAGE REGIONS COMPUTED FROM
THE MODEL, BUT GIVEN THE IMAGE WORDS.

060 |
TABLE V
THE MUTUAL INFORMATION BETWEEN IMAGE REGIONS COMPUTED FROM
THE “GROUND TRUTH” DISTRIBUTION OF THE WORDS FOR THAT REGION.

[ 663 | 153 |

posteriorsfrom region word posteriorsImageword posteriors
arenecessaryothfor trainingwith correspondencambiguity,
as well asimage annotation.These nding suggestthat we
may be ableto improve the heuristic.

In a fourth experiment (Table IV), we constrainedthe
region word posteriorto have massonly for words that were
associatedwith the image. The remaining uncertaintyis a
combinationof correspondencembiguity and mismatches
betweerkeywordsandwhatis depictedn regions.In this case
the mutual information was very high (4.40). More striking
wasthe low value of the conditionalentrogy (0.60).

In our nal experiment (TableV) we computedthe mutual
informationusingthe region groundtruth (5.10),andherethe
conditional entropy was 1.53. A critical obsenationsis that
this numberincludesuncertaintydue to segmentationerrors
which arevery prevalent,assggmentatioralongsemantidines
is very dif cult. The substantialljjower conditionalentrogy in
the fourth experimentsuggests$o usthatour modelis perhaps
loosing too much information, and perhapsits power should
be increased.

V. FINDING VISUAL WORDS

We have further appliedinformation theoreticmeasureso
quantify the “visualness” of words. In particular we have



proposedusingthe entrogy of imageregionslikely associated
with a givenword asa measureof “visualness”[5]. We would
like determine'visualness”on a large scaleto supportinternet
scale linking of pictures and words. Given the extensve
vocahilary that this implies, it makes senseto investigate
which wordsaregoodcandidategor successThuswe seethe
rst immediateapplicationof this work asa tool for pruning
large vocahularies to exclude the mary words that are not
visual, relative to our features.

We begin by using using Google Image Searchto nd
a large numberof imagesthat have a fair chanceof being
relevantto a givenword. Having selectedheimages,we face
a familiar problem.Evenif a word is relevantto animagein
general,it likely correlateswith the featuresof only a small
part of the image. We expect the bulk of ary imageto be
irrelevant to the word. Hence to estimatewhethera word
correlateswith image features,we needto estimatewhich
partsof the imagearerelevant. Not surprisingly this requires
an iterative algorithm which alternatesbetweendetermining
an appropriatecharacterizatiorior the word, and determining
which regionsarerelevant.

To implementthis we preparea large Gaussianmixture
model for the regions of a large number of images. A
conceptis characterizedas probability distribution over the
mixture componentsWe iteratively estimatethat distribution
and whether or not each image region is relevant to the
concept.After sufcient iterationswe computethe entrogy of
the distribution. If that distribution haslow entrogy, thenwe
designatehe word as visual. Otherwise the processsuggests
that it is hard to distinguishthe regions linked to the word
from a randomselectionof regions. In that casewe consider
that word not sufciently visual, and pruneit from the words
that we try to link to image features.Details are available
elsavhere[5].

A. Experiments

We experimentedwith the 150 most common adjecties
usedfor indexing imagesin the HemeraPhoto-Objectcol-
lection. We usedeachof theseadjecties as the searchterm
for Googlelmage search.We usedthe rst 250 web images
returned.

Figure 1 shows “yellow” images after one iteration. In
the gure, the regionswith high probability are
labeledas “yellow”, while the regions with high probability

- arelabeledas“non-yellow”. Figure2 shavs
“yellow” imagesafter ve iterations.This indicatesthe itera-
tive region selectionworked well in caseof “yellow”.

Table VI shawvs the 15 top adjectves and their image
entropy. In this case,the entroy of “dark” is the lowest, so
in this sensé‘'dark” is the most“visual” adjectve amongthe
150 adjectves underthe conditionwe setin this experiment.
Figure4 shavs someof the“dark” imagesMost of theregions
labeledwith “dark” are uniform black ones.

Interestingly the methodidenti es mary words which, at
rst glance,do not appearto be truly visual. A good example
in our resultsis “professional’which is rankedrelatively high.

Fig. 1. “Yellow” regionsafteroneiteration.At this stagemary of theimages
do not have much yellow in them, and there are mary labeling errors. For

example,the o wer in the top right imageis green-blueasis the region in

thethird imagein thetop row. Theregion markedyellow in the secondmage
of the secondrow is white, whereasthe two smaller un-labeled regionsto

eithersidearein fact yellow.

Fig.2. “Yellow” regionsafter veiterationsTheseémagesall have signi cant
yellow regions, andthey are generallycorrectly labeled.The entrogy of the
yellow regions,as modeledby a Gaussiarmixture over featuresjs relatively
low comparedwith backgroundor randomregions. Hencethe systempicks
out “yellow” asa visual word.

The connectionis throughthe samplingbiasfor “professional
sports”which yields low entropy becausef alimited number
of textures and backgroundge.g. elds and courts) that go
with thoseimages It dependsn the applicationasto whether
suchwords are a liability.

TableVIl lists the 15 adjectveswith lowestentropy among
the 150 tested.In caseof “religious” (Figure 3), which is
ranked as 145-th, the region-adjectve linking did not work
well, and the entropy is thus relatively large. This re ects
the fact that the image featuresof the regions included in
“religious” imageshave no prominenttendeng. Thuswe can
saythat “religious” hasno or only a few visual properties.

Fig. 3. “Religious” regionsin imagesfrom the web gatheredby using the
word “religious”. Thereis little obvious patternof difference betweenthe
two kinds of regions, consistentwith the notion that our low level features
arenotlikely to beableto representhe meaningof “religious”. Thereis little

differencein the entrofy betweenthe regions deemedreligious” and those
deemed“non-religious™ botharelarge. Thusthemethoddenotes'religious”
asa non-visualword given the features.



Fig. 4. “Dark” regionsin imagesfrom the web gatheredby usingthe word
“dark”. “Dark” regions are identi ed as being dark, which meansthat they
have little variancein color or texture on an absolutescale.Hence taken asa
group, their entrofy, asmeasuredn the context of a Gaussiarmixture model
over features,is relatively low. Thusthe methoddenotes™dark” asa visual
word.

V1. CONCLUSION

We have applied standardinformation theory methodsto
provide someinsightinto the task of building systemswhich
automatically link words to images and words to image
regions. In particular information theoreticmeasuresappear
to quite usefulfor thinking aboutthe relation betweenimage
annotatiorandregion labeling. The former seemdo be equiv-
alentto thelaterwith addedcorrespondencambiguity but we
do not have a cleartheoryon how thesetwo processeshould
relate in the context of algorithm building. Complications
include sggmentationerrorsand vocahulary issues.The work
presentedin this paper suggeststhat useful quanti cation
of the componentsof uncertaintycan be achiezed through
informationtheory

We have further usedinformationtheory measuresnethods
to quantify the “visualness” of words. This yields a simple
method to prune large vocahularies of words that are not
visual, given our featuresIn the domainof linking wordsand
pictures,suchnon-visualwordsincreasecomputationburden,
and complicatealreadydif cult model tting and selection.
Thusa methodto automaticallyremove them makes sense.
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