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Abstract— We quantify the mutual information betweenwords
and imagesor their componentsin the contextof a recentlydevel-
oped model for their joint probability distrib ution. We compare
the resultswith estimatesof human level performance,exploiting
a methodology for evaluating localized image semantics.

We also report resultsof using information theoretic measures
to determine whether or not a word is “visual”. In particular , we
examinethe entropy of imageregionslik ely to be associatedwith
a candidate visual word. We proposeusing such an approach to
prune words that do not link to given features.This can reduce
the dif�culties of linking of words and imagesin large scaledata
sets.

I . INTRODUCTION

Intuitively there is much mutual information betweenim-
agesandassociatedtext. For example,givenan image,we are
not overly surprisedby relevant keywords. In this work we
quantify the mutual information suggestedby this scenario,
using a recentlydevelopedmodel for the joint probability of
wordsandimagesandtheir components[1], [2], [3]. We con-
siderboth the mutual informationbetweenentire imagesand
words,andimageregionsandwords.We comparethe results
with estimatesof humanlevel performance,exploiting recent
methodologyfor evaluating localized image semantics[4].
This gives an alternative characterizationof these models,
differentfrom theword predictionperformancemeasuresused
so far [1], [2], [3].

In a different application,we considerthat the entropy of
image regions associatedwith a word can be indicative of
how “visual” that word is. Thus we can apply information
theoreticmeasuresto determinewhetheraword is “visual” [5].
This is importantbecausethe automatedprocessingof large
image data setsinvolves potentially very large vocabularies,
but many wordsassociatedwith imagesarenot very usefulfor
visual representation.This suggestsa large scaledatamining
exerciseto determinewhich wordsare likely to be useful for
automaticallyannotatingimagesbasedon visual properties.

I I . ESTIMATING THE MUTUAL INFORMATION OF WORDS

AND IMAGES OR THEIR COMPONENTS

We computethemutualinformationof randomvariablesfor
words,W, andblobs,B, by the standardformula [6]:
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(1)

where H(X) is the entropy of the random variable X. We
interpret this informally as the reduction in entropy of the

words, oncewe seethe imageor imagecomponent.Mutual
information is symmetric,andwe equallyhave
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(2)

To quantifythemutualinformationof wordsandpictures( ! IV)
we apply form (1), andfor the applicationto �nding “visual”
words( ! V) we useform (2) — in fact,sincewe only needto
rank the words,we useonly
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.
We computethe requiredprobabilitiesbasedon modelsfor

their joint probability describedbelow ( ! III-A). Thesemodels
are quite limited in effectiveness,re�ecting that the current
stateof the art hasa long way to go. Henceone motivation
for this work is to comparethe mutual informationcomputed
from suchmodelswith similarquantitiesbasedonhumanlevel
recognition.

An importantdistinctionis themutualinformationbetween
words and images,taken as a whole, and words and image
regions.Most words associatedwith imagesrefer to speci�c
partswithin the image.Further, we assumethat systemsthat
automateimageunderstandingmustembodyimagecomposi-
tionally. However, themodelsof thegenreoutlinedbelow are
typically trainedondatawherethenatureof thecompositionis
hiddenby correspondenceambiguity. For example,thetraining
set used for the �rst set of experimentsconsistsof images
with roughly � ve keywords, but we are ignorant of which
image parts go with which keywords. We posit that even if
the goal is simply imageannotation— suitablefor indexing
application— the reductionof uncertaintyin correspondence
is a key issuefor generalization.For example,an algorithm
that confuseshorsesandgrasswill do �ne as long as horses
andgrassalwaysco-occurasthey might in a trainingset.Thus
in this work we setout to measuremutualinformationon both
imageannotationandregion labeling.

A. Groundtruth semanticentropy

For the ground truth word distributions for entire images
we remainconsistentwith previous work andassumethat the
keywords provide a reasonableempirical estimate[3]. This
ignoresissuesof completenessof the keyword set relative to
the vocabulary, and relationsamongthe words.For example,
in a tiger image,shouldthe word “cat” be treateddifferently
than the word “tiger”?

In the caseof image regions, an additional complexity is
that,dueto imprecisesegmentation,eachregion will generally



coversomesubsetof theimagearearelevantto severalseman-
tic entities.We have addressedsomeof theseissuesin recent
work on theevaluationof localizedimagesemantics[4]. That
work providesa methodto compute,for a givensegmentation,
a distribution of weights over the words that quanti�es the
reward for assigningthat word for that region. The method
usesWordNet [7] to establisha protocol for scoring related
words.For example,“tiger” is rewardedmorethan“cat”,with
theproportionsetsothatblind guessingof eitheronewill give
the sameexpectedvalueof the overall score.

For the experimentsin this paper, we assumethat these
weights are proportional to a good ground truth probability
distribution. Further, the sum of thesescoresgive a weight
encoding the proportion of the image semanticsattributed
to that region. We use this weighting to computeaverages
over regionsto mitigatesomewhat the impactof theparticular
segmentationalgorithm.Theresultsusingstraightaveragesare
substantively similar.

I I I . MODELING THE JOINT PROBABIL ITY OF WORDS AND

IMAGE REGIONS

Recentwork suggeststhat relatively simpleapproachescan
usefully model the joint probability distribution of image
region featuresand associatedwords [1], [2], [3], [8], [9],
[10]. Using regions or other localized featuresmakes sense
becauseimagesemanticsare largely dependenton composi-
tional elementswithin themsuchasobjectsandbackgrounds.
These models are trained using large data sets of images
with associatedtext. Critically, the correspondencebetween
particularwordsandparticularvisualelementsis not required,
as large quantitiesof such data is not readily available and
expensive to create.

The generalidea,sharedby many variantsof the approach,
is that image are generatedfrom latent factors (concepts)
which contributeboth visual entitiesandwords.The fact that
visual entitiesandwordscomefrom the samesourceis what
enablesthe model to link them.Becausewe train the models
without knowing the correspondence,we needan assumption
of how multiple draws from the pool of factorslead to the
observeddata.Themodeldetailedbelow assumesthatmultiple
draws are �rst madeto produceimageentities,and then the
samegroupof factorsis sampledto producethe imagewords.

Note that this implementsthe key assumptionthat image
semanticsis compositional,and thus each image typically
needsto be describedby multiple visual entities. Without
compositionally, we would needto model all possiblecom-
binationsof entities.For example,we would have to model
tigers on grass,tigers in water, tigers on sand,and so on.
Clearly, one tiger modelshouldbe reusedwhenpossible.

In what follows, we use feature vectors associatedwith
imageregionsobtainedusing normalizedcuts [11]. For each
imageregion we computea featurevectorrepresentingcolor,
texture, size,position,shape[12], andcolor context [13]. We
refer to region, togetherwith its featurevector, asa blob.

A. An exemplarmulti-modaltranslationmodel

We model the joint probability of a particularblob, $ , and
a word % , as
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where
/

indexes over concepts,
&'�"/�	

is the concept prior,
&'�
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is a frequency table,and
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is a Gaussiandistri-
bution over features.We furtherassumea diagonalcovariance
matrix (independentfeatures)because�tting a full covariance
is generally too dif�cult for a large number of features.
This independenceassumptionis less troublesomebecause
we only requireconditionalindependence,given the concept.
Intuitively, eachconceptgeneratessomeimageregionsaccord-
ing to the particular Gaussiandistribution for that concept.
Similarly, it generatesone ore more words for the image
accordingto a learnedtableof probabilities.

To go from the blob orientedexpression(3) to one for an
entire image,we assumethat the observed blobs,
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, yield a
posteriorprobability,
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. Wordsarethengeneratedconditionedon the blobs
from:
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whereby assumption
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andBayesrule is usedto compute
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.
Some manipulation[14] shows that this is equivalent to

assumingthat theword posteriorfor the imageis proportional
to the sumof the word posteriorsfor the regions:
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We limit the sumover blobs to the largestN blobs(in this
work N is sixteen).While training, we also normalize the
contributions of blobs and words to mitigate the effects of
differing numbersof blobs and words in the varioustraining
images.The probability of the observed data,
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, given
the model, is thus:
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where
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(similarly Y#ZT[
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R )) is themaximumnumber
of blobs (words) for any training set image,
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R )is the numberof blobs (words) for the particular image,
and
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is computedfrom (5).
Since we do not know which conceptis responsiblefor

whichobservedblobsandwordsin thetrainingdata,determin-
ing the maximumlikelihoodvaluesfor the modelparameters
(
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, and
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) is not tractable.We thusestimate
values for the parametersusing expectation maximization
(EM) [15], treatingthe hiddenfactors(concepts)responsible
for the blobsandwordsasmissingdata.

The model generalizeswell becauseit learnsabout image
components.Thesecomponentscanoccurin differentcon�g-
urationsandstill be recognized.For example,it is possibleto
learnabout“sky” regionsin imagesof tigers,andthenpredict
“sky” in giraffe images.Of course,predictingtheword giraffe
requireshaving giraffes in the training set.

IV. EXPERIMENTS

Wetrainedtheabovemodelonasetof 26,078Corelimages.
The vocabulary size was 509 words.The numberof mixture
componentswas2000.We report resultsfor the 1014images
for which we have groundtruth region labels.Theseimages
wereheldout from training.Naturally, wheretheresultsre�ect
model �t, the training dataresultswerea little better, but not
substantively.

For the �rst experiment(Table I), we estimatedthe quan-
tities
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averagingover the image set to
estimate the marginal P(W). This gives similar results to
simply using the empirical word distribution, but we prefer
marginalizing in the same context of the computation of
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to reducebiasesin themutualinformationestimate.
With this protocol,we found relatively little mutual informa-
tion (0.63).

In the secondexperiment(Table II), we forced the word
posteriorfor eachimageto have massonly on the observed
keywords.This givesgroundtruth quantitiesthat arecompa-
rablewith thosein the previous experiment.Not surprisingly,
theconditionalentropy (2.42)re�ects thenumberof keywords
thatwe have for eachimage(typically in the rangeof 3 to 5).
The mutual informationherewas3.23.

Clearlythereis a largedifferencebetweenourmodelandthe
“oracle”. To further comparethe two processes,we computed
the averageKL divergencebetweenthe word posteriordistri-
butionsandtheobservedimageworddistributions,�nding it to
be4.27.As a comparison,theaverageKL divergencebetween
theoverallword empiricaldistribution andtheobservedimage
word distributions is 5.50. This is consistentwith results
reportedelsewhere [3] — our models consistentlyperform
somewhat betterthanchance,but we have a long way to go.

In the third experiment(TableIII), we computedquantities
similar to thosein the �rst, but now entropy was computed
using probability distributions conditionedon only one blob.
Interestingly, we foundthatour modelsupportedsubstantively
more mutual information (2.64) betweenregions and words
than betweenimagesand words. Recall that the model ex-
plicitly representsthe joint probability of words and regions,
and that we used a heuristic for producing image word

TABLE I

THE MUTUAL INFORMATION BETWEEN ENTIRE IMAGES AND OUR

VOCABULARY WORDS COMPUTED BASED ON THE MODE DESCRIBED IN

THE TEXT ( ^ I I I -A)

_)`badc _)`ba�e f2c gh`ia�j�f�c

7.32 6.69 0.63

TABLE II

THE MUTUAL INFORMATION BETWEEN ENTIRE IMAGES AND OUR

VOCABULARY WORDS COMPUTED USING THE IMAGE KEYWORDS.

_)`badc _)`ba�e f2c gh`ia�j�f�c

5.65 2.42 3.23

TABLE III

THE MUTUAL INFORMATION BETWEEN IMAGE REGIONS AND OUR

VOCABULARY WORDS COMPUTED FROM THE MODEL .

_)`badc _)`ba�e f2c gh`ia�j�f�c

7.01 4.37 2.64

TABLE IV

THE MUTUAL INFORMATION BETWEEN IMAGE REGIONS COMPUTED FROM

THE MODEL , BUT GIVEN THE IMAGE WORDS.

_)`badc _)`ba�e f2c gh`ia�j�f�c

5.00 0.60 4.40

TABLE V

THE MUTUAL INFORMATION BETWEEN IMAGE REGIONS COMPUTED FROM

THE “ GROUND TRUTH” DISTRIBUTION OF THE WORDS FOR THAT REGION.
_)`badc _)`ba�e f2c gh`ia�j�f�c

6.63 1.53 5.10

posteriorsfrom region word posteriors.Imageword posteriors
arenecessarybothfor trainingwith correspondenceambiguity,
as well as image annotation.These�nding suggestthat we
may be able to improve the heuristic.

In a fourth experiment (Table IV), we constrainedthe
region word posteriorto have massonly for words that were
associatedwith the image. The remaining uncertainty is a
combinationof correspondenceambiguity, and mismatches
betweenkeywordsandwhatis depictedin regions.In this case
the mutual information was very high (4.40). More striking
was the low valueof the conditionalentropy (0.60).

In our �nal experiment (TableV) we computedthemutual
informationusingthe region groundtruth (5.10),andherethe
conditional entropy was 1.53. A critical observations is that
this numberincludesuncertaintydue to segmentationerrors
whichareveryprevalent,assegmentationalongsemanticlines
is very dif�cult. Thesubstantiallylower conditionalentropy in
thefourth experimentsuggeststo us thatour modelis perhaps
loosing too much information,and perhapsits power should
be increased.

V. FINDING VISUAL WORDS

We have further appliedinformation theoreticmeasuresto
quantify the “visualness” of words. In particular, we have



proposedusingthe entropy of imageregionslikely associated
with a givenword asa measureof “visualness”[5]. We would
like determine“visualness”on a largescaleto supportinternet
scale linking of pictures and words. Given the extensive
vocabulary that this implies, it makes senseto investigate
which wordsaregoodcandidatesfor success.Thuswe seethe
�rst immediateapplicationof this work asa tool for pruning
large vocabularies to exclude the many words that are not
visual, relative to our features.

We begin by using using Google Image Searchto �nd
a large numberof imagesthat have a fair chanceof being
relevant to a givenword. Having selectedthe images,we face
a familiar problem.Even if a word is relevant to an imagein
general,it likely correlateswith the featuresof only a small
part of the image. We expect the bulk of any image to be
irrelevant to the word. Hence to estimatewhether a word
correlateswith image features,we need to estimatewhich
partsof the imagearerelevant.Not surprisingly, this requires
an iterative algorithm which alternatesbetweendetermining
an appropriatecharacterizationfor the word, anddetermining
which regionsare relevant.

To implement this we preparea large Gaussianmixture
model for the regions of a large number of images. A
conceptis characterizedas probability distribution over the
mixture components.We iteratively estimatethat distribution
and whether or not each image region is relevant to the
concept.After suf�cient iterationswe computethe entropy of
the distribution. If that distribution haslow entropy, then we
designatethe word asvisual.Otherwise,the processsuggests
that it is hard to distinguishthe regions linked to the word
from a randomselectionof regions.In that casewe consider
that word not suf�ciently visual, andpruneit from the words
that we try to link to image features.Details are available
elsewhere[5].

A. Experiments

We experimentedwith the 150 most common adjectives
used for indexing imagesin the HemeraPhoto-Objectcol-
lection. We usedeachof theseadjectives as the searchterm
for GoogleImagesearch.We usedthe �rst 250 web images
returned.

Figure 1 shows “yellow” images after one iteration. In
the �gure, the regionswith high probability

&'�lkAmonpnrqtsu� vhwx	

are
labeledas “yellow”, while the regions with high probability
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arelabeledas“non-yellow”. Figure2 shows
“yellow” imagesafter � ve iterations.This indicatesthe itera-
tive region selectionworked well in caseof “yellow”.

Table VI shows the 15 top adjectives and their image
entropy. In this case,the entropy of “dark” is the lowest, so
in this sense“dark” is the most “visual” adjective amongthe
150 adjectivesunderthe conditionwe set in this experiment.
Figure4 showssomeof the“dark” images.Mostof theregions
labeledwith “dark” areuniform black ones.

Interestingly, the methodidenti�es many words which, at
�rst glance,do not appearto be truly visual.A goodexample
in our resultsis “professional”which is rankedrelatively high.

Fig. 1. “Yellow” regionsafteroneiteration.At this stagemany of theimages
do not have much yellow in them, and there are many labeling errors.For
example,the �o wer in the top right imageis green-blue,as is the region in
thethird imagein thetop row. Theregion markedyellow in thesecondimage
of the secondrow is white, whereasthe two smaller, un-labeled,regions to
eithersideare in fact yellow.

Fig.2. “Yellow” regionsafter� ve iterations.Theseimagesall havesigni�cant
yellow regions, and they are generallycorrectly labeled.The entropy of the
yellow regions,asmodeledby a Gaussianmixture over features,is relatively
low comparedwith backgroundor randomregions. Hencethe systempicks
out “yellow” asa visual word.

The connectionis throughthesamplingbiasfor “professional
sports”which yields low entropy becauseof a limited number
of textures and backgrounds(e.g. �elds and courts) that go
with thoseimages.It dependson theapplicationasto whether
suchwordsarea liability.

TableVII lists the15 adjectiveswith lowestentropy among
the 150 tested.In caseof “religious” (Figure 3), which is
ranked as 145-th, the region-adjective linking did not work
well, and the entropy is thus relatively large. This re�ects
the fact that the image featuresof the regions included in
“religious” imageshave no prominenttendency. Thuswe can
say that “religious” hasno or only a few visual properties.

Fig. 3. “Religious” regions in imagesfrom the web gatheredby using the
word “religious”. There is little obvious patternof differencebetweenthe
two kinds of regions, consistentwith the notion that our low level features
arenot likely to beableto representthemeaningof “religious”. Thereis little
differencein the entropy betweenthe regions deemed̀ religious” and those
deemed“non-religious”— botharelarge.Thusthemethoddenotes̀' religious”
asa non-visualword given the features.



Fig. 4. “Dark” regions in imagesfrom the web gatheredby usingthe word
“dark”. “Dark” regions are identi�ed as being dark, which meansthat they
have little variancein color or texture on anabsolutescale.Hence,taken asa
group,their entropy, asmeasuredin the context of a Gaussianmixturemodel
over features,is relatively low. Thus the methoddenotes̀ 'dark” as a visual
word.

VI. CONCLUSION

We have applied standardinformation theory methodsto
provide someinsight into the taskof building systemswhich
automatically link words to images and words to image
regions. In particular, information theoreticmeasuresappear
to quite useful for thinking aboutthe relationbetweenimage
annotationandregion labeling.Theformerseemsto beequiv-
alentto thelaterwith addedcorrespondenceambiguity, but we
do not have a cleartheoryon how thesetwo processesshould
relate in the context of algorithm building. Complications
includesegmentationerrorsandvocabulary issues.The work
presentedin this paper suggeststhat useful quanti�cation
of the componentsof uncertaintycan be achieved through
information theory.

We have furtherusedinformationtheorymeasuresmethods
to quantify the “visualness”of words. This yields a simple
method to prune large vocabularies of words that are not
visual,givenour features.In thedomainof linking wordsand
pictures,suchnon-visualwords increasecomputationburden,
and complicatealreadydif�cult model �tting and selection.
Thusa methodto automaticallyremove themmakessense.
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