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ABSTRACT be used to help resolve ambiguities. For example, there usu-
ally is no slide change when the camera is zooming. Simi-
Cl_arly, it is more likely that the camera will remain fixed when
there is a slide change.

In this work, we extend our previous work [4] that matches
gllides based on visual features alone, and integrates the ca
era cue into a dynamic HMM in which the state transition

performance in more difficult cases. We model slide changBrObab”'t'es are dependenton the camera events. The tempo

in a presentation with a dynamic Hidden Markov Model (HMI\)I;Fil model also captures the notion that slides are usuadly pr

that captures the temporal notion of slide change and Whoséam(Ed sequentially and not randomly, which as shown later

transition probabilities are adapted locally by using thme In the paper, can greatly improve the ability of the model in

era events in the inference process. Our results show thglsamblguatlng similar slides in the videos.

combining multiple cues in a state model can greatly improve
the performance in ambiguous cases. 2. THE SLIDE-MATCHING FRAMEWORK

We develop a general framework to automatically match ele
tronic slides to the videos of corresponding presentatidps
plications include supporting indexing and browsing of edu
cational and corporate digital video libraries. Our apploa
extends previous work that matches slides based on visu
features alone, and integrates multiple cues to furtherone

Index Terms— Algorithm, Cameras, Image matching  Qur slide-matching framework consists of three phases: key
point matching, camera event detection, and a dynamic HMM
1. INTRODUCTION based on camera events (Fig. 1). In the first phase, frame-
to-slide homographies (i.e the projection transformatibe-
Matching slides to videos provides an attractive way of intween the slides captured by camera and their original ones)
dexing videos by slides for searching and browsing. It carf available, are found by keypoint matching and all the feam
also improve the quality of the videos through projecting th are classified int@ categories: full-slide (the entire frame
high-resolution slides back into the videos. Recently manghows the slide content)small-slide (the frame contains
approaches have been proposed to automatically matcks slideoth a slide area and a substantial portion of the scene back-
to videos [1, 2, 3, 4, 5, 6, 7, 8. ground), andno-slide (see [4] for more details). The second
Depending on the capturing systems, the slides may aphase detects the camera event between each pair of consec-
pear dramatically differently in the video. A dynamic cap- utive frames by using the homographies computed and the
turing system with one or more cameras that are allowed tffame types classified in the first phase. Finally, in thedthir
pan, zoom and tilt has the flexibility to capture the presente phase, the visual features, temporal information and thve ca
the slides and the audience or all of them, thus produce mof¥a events are incorporated into a dynamic HMM to find an
lively and instructional videos. However, the videos capdu  Optimal sequence of slides matching the frame sequence.
by such a system present various ambiguities between the
captured slide images and the original slides, making téle ta 3. SLIDE EVENTS AND CAMERA EVENTS
of automating synchronization of slides with videos moffe di
ficult. Complications include zooming-in or zooming-oudlsk, In a presentation video there are events initiated by the pre
slides partially occluded by the presenter, and no slidg@sa senter and the producer (camera person). These events deter
due to the camera panning to the presenter or audience. In agline the visual appearance of the video frames. For example,
dition to these difficulties, some ambiguities come from theduring a presentation, the presenter may make slide changes
slides themselves such as identical slides and slide aieimat write on the board, play video demonstrations, or browse the
that sometimes generates extremely similar slides. web. Accordingly, the producer may switch cameras, zoom
Although the dynamic nature of presentation video pro-or pan the camera in order to capture informative and mean-
duction poses additional challenges to slide-matching-alg ingful scenes such as the slide content and the gestures of th
rithms, it also yields useful cues on slide change, which capresenter.
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Fig. 1. The flow of our framework.

to-slide homographies can be used to spot the slide position
Interestingly, these two types of events are not indeperil the frames. This leads us to simply represent each of the
dent. For example, a camera zoom may indicate that thglrée eventszoom-in zoom-ouandstay-zoomthat ensure
slide remains the same. Similarly, the camera is less likeljh€ €xistence of frame-to-slide homographies by a Gaussian
to change during a video demo or slide change. More gerflistribution over the ratio of the slide areas of two consecu
erally, we expect the frame-to-slide homography to remaiﬁiYe frames. The parameters of the distributions were fitted

across slide changes and the slide to remain unchangeaacrééectly from a held-out portion of the ground truth dataisTh
camera changes. method yielded ove99% classification accuracy. In the case

An event from the presenter is calledlide eventwhich ~ Where no homography is available, we use the frame types
describes how slides change in an presentation. We dendilassified by the matching algorithm to determine the camera
Sk as a slide event that changes the current slide the events. For example, a current small-slide frame and a fol-
slide (n + k). The sign ofk indicates the direction of the lowing no-slide frame indicate a slide-out event between th
slide change an& = 0 implies that the current slide stays Wo frames.
unchanged.

A camera event dgscribes how th_e produc_er operates theg  TEMPORAL MODELING OF SLIDE CHANGE
cameras when capturing a presentation. Basic camera oper-
ations include zooming, staying fixed and panning/tiltig. e first describe a standard HMM without using camera in-
this paper, we definetypes of camera operations of interest: formation to model slide change. We then extend it to a dy-

zoom-in, zoom-out, stay-fixed, slide-in, slide-andstay-out  namic HMM in which the model parameters are adjusted lo-

from what a reader may know alreaddoom-inmagnifies the
slide area significantly in the current frame with respect to ] )
the previous frame. It happens when the producer increasésl- A Standard HMM Without Camera Information

lthe f%cal length or SWLFCheS, toa chera ‘?,’ith a ]Iconger focakjiges do not change randomly in a presentation. Instead, th
ength. Zoom-outs defined inverselyStay-fixedefers to a 5ot always advance sequentially according to theirrorde
static status of_the camerawhen it focuses on the slidéw(eit ; the presentation file, though sometimes the sequence may
small or full slides) W't_hOUt m_o_vement. The otheevents be interrupted by shifting to the previous slide or jumping
relate to camera panning or tilting. When .the camera Moveg, gp arbitrary slide. To capture this notion, we model slide
from the slide to capture the presenter/audience only {de sl change by a HMM with slide numbers as hidden states. Since

In ;h? fratljme),l_(\j/ve_ call |1sI|de-_0uth The opposite opberatlon the number of slides for each presentation can vary greatly,
Is defined aslide-in Stay-outis the camera event between .o oqngjder the slide transition aatelessi.e we assume

slide-outandslide-inwhen the slide is not being captured. A y o the transition from slide to slide3, for instance, is no
camera irstay-outmay still zoom or move. We do notfurther e rent from a change from slideto 8. We also introduce
differentiate between them as they provide little inforimiat an auxiliary staténull” (Fig. 2) between each pair of slides

about slide change. (si,s;) to represent the no-slide frame. Note that the over-
head for adding @null” node between each pair of slides is
4. DETECTING CAMERA EVENTS negligible as only onénull” node needs to be actually main-
tained in the implementation due to the stateless assumptio
Camera motion can be considered as an optical flow problerof the slide transition. We estimate the stateless slide- tra
Many approaches have been developed to detect camera @ition probabilities from held out data. Because the data is
erations based on the analysis of the motion vector field (sdenited, we enforce smoothness using a Poisson distributio
[9] for a review). In our case, the previously computed frame as follows,



We first sampled the videos by extracting one frame per sec-

nP(—m,A) m <0 ond with software that also added keyframes determined by
A(silsj) = ¢ P(0,A) m =0 (1)  shot boundary detection to the frames used. We then manu-
(1=n)P(m,\) m>0 ally constructed a ground truth matching between frames and

s slides and the camera events.
wherem = s; — s; is the slide event, anf(z, \) = <2 : . . .
) . 2 Lot We used two evaluation methods in our experiments. First,
is the Poisson distributiom is the frequency of slides going : : ) .
: , as in previous work [4], we considered the number of mis-
backwards with respect to going forwards. BgtAnd\ were .
. . recognized frames over the total number of frames. However,
fitted from a held-out portion of the ground truth data. Value . .
due to the higher sampling rate used here, the error computa-
for n were between 0.05 and 0.09 and valuesXavere be- .=~ .~ . . .
... tjon is biased towards slides that appeared for a longer. time
tween 0.04 and 0.05. Table 4 shows the actual distribution .
hus, we used a second method that evaluated the algorithms

slide transition in our data. Because of the high frame sam- . ; . - :
. . . ased on video segments. A segmentis defined as a video clip
pling rate we usedl(frame/ sec), there is a very high chance "’ . )
with neither slide change nor camera change. The error rate

that a slide stays unchanged. It also appears that slidds tePor a segment is defined as
to go forward much more frequently than backward. '

We estimate the slide observation probabilityf;|s;) of ) ) N )
a framef; given a slides; by the fraction of the matched key- ~  _ # Of incorrectly identified frames in the segmen{z)
points of f; to s; over the total number of matched keypoints # of total frames in the segment
of f; to all the slides. When no matching slides are found for
a frame that is marked as a slide frame by the slide matchingegments with less thaframes ¢ seconds) were ignored in
algorithm, a uniform probability is assigned. the experiments.

The optimal sequence of slides matching the frame se-
guence is found by the well-known Viterbi algorithm [10].

We measure the performance of three algorithms: the key-
point matching algorithm ( BASE ), the standard HMM (
HMM ) and the camera-event-based HMM ( CHMM ).

5.2. A Dynamic HMM Based on Camera Events The results on the two data sets are presented in Table 1

In the standard HMM, the model parameters are derived if"d 2- Both HMMs greatly outperform the base matching al-

the training data and the parameters remain unchanged d@°"thm and CHMM performs the best, showing clearly the

ing the entire inference process. The dynamic model can Hadvantage of using the temporal and camera information. As
regarded as incorporating context dependent informatitn i € €XPected, there was significantimprovementin the match-
the transition probabilities [11]. In our case, the contbet ing performance of sme_lll shdes._ In addition, the matching
pendent information is the relationship between slide tven Performance for large slides also improved.
and camera events. For example, camera change is associatedOn these two data sets CHMM performs slightly better
with a higher probability that there is no slide change. than HMM (comparable on UNIV and some improvementon
More specifically, we condition the state transition prob-CONF1). The results are consistent with the observation tha
ability through the camera-dependent transition proitgibil the density and complexity of the camera events in UNIV is
p(si|s;, ). These probabilities are estimated from the held+elatively low, and even in CONF1 they are far from extreme.
out portion of the ground truth data. A trivial modificatioh o We thus expect more improvement on more difficult data.

the Viterbi algorithm, namely replacings; |s;) by p(si|s;, ¢) We conducted another experiment on CONF1 to see how
at each time step based on the camera eveist sufficient  muych the temporal and camera cues contribute to the perfor-
to find an optimal slide sequence. Nevertheless, becausengance improvementin the case of small slides. To do this we
specific camera event may exclude many states that have fighored the key point matching cues and computed the align-
be visited in the standard HMM, we can employ a variant ofment based only on the temporal and camera event model. As
Viterbi algorithm such as the one used in [12] to speed up theecorded in Table 3, there is still more th&6% accuracy
inference. For example, if we know a camera is atst®-  on the small slides for both models even if no slide keypoint
out state (not looking at the slide), the algorithm only needsmatching information is used. This further demonstrates th

to visit the*null” node instead of all nodes. potential contribution of temporal models to a robust slide
matching system.
6. EXPERIMENTS AND RESULTS Finally, we broke down the results in Table 5 according to

the slide events. The results clearly show that the HMMs can
The videos used for our evaluation &r® N F'1 andUNIV  model the sequential change of slide very well. The HMMs
(see [4] for more details)CON F'1 is a set of6 videos cap- also showed the potential to handle non-sequential slidegyén
tured by three cameras from a corporate conferetidé/VV  on CONF1, but failed on KUAT due to very limited examples
has3 videos captured by two cameras in a university seminaiof no-sequential change in the data.



Data Alg # full-slide | # small-slide | # no-slide Total 7. CONCLUSIONS
BASE | 132 (2.15) | 193 (12.53) | 7(0.09) | 332 (2.15)

CONF1 | HMM | 104 (1.69) | 88(5.71) 9(0.12) | 201 (1.30) ; ;
CHMM | 97(158) | 84(545) | 11(014) |192(124) We presentg ger_leral fra_meV\_/orkto automatically matchslide
#frames | 6147 1540 7742 15429 to presentation videos with high accuracy. Our results esgg
BASE | 85(2.37) | 136(23.09) | 70(1.83) | 291(3.64) that both the temporal and camera cues are very promising

UNIV HMM 28(0.78) | 42(7.13) | 116(3.03) | 186(2.32) . : : .
CHMM | 28(0.78) | 40(6.79) |120(3.133)| 188 (2.35) sources of information to disambiguate the occurrence and
#frames | 3586 589 3830 8005 identity of slides in videos when conditions are challeggin

Further complexity in the inter-relation of these eventsldo
be modeled using coupled HMM’s [13]. We are currently
exploiting this approach.

Table 1. Frame-oriented overall error rates of the three algo-
rithms, marked by the number of mis-recognized frames aaeth
ror percentage in the brackets on the full-slide , smatlesland
no-slide frames.
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