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ABSTRACT

We develop a general framework to automatically match elec-
tronic slides to the videos of corresponding presentations. Ap-
plications include supporting indexing and browsing of edu-
cational and corporate digital video libraries. Our approach
extends previous work that matches slides based on visual
features alone, and integrates multiple cues to further improve
performance in more difficult cases. We model slide change
in a presentation with a dynamic Hidden Markov Model (HMM)
that captures the temporal notion of slide change and whose
transition probabilities are adapted locally by using the cam-
era events in the inference process. Our results show that
combining multiple cues in a state model can greatly improve
the performance in ambiguous cases.

Index Terms— Algorithm, Cameras, Image matching

1. INTRODUCTION

Matching slides to videos provides an attractive way of in-
dexing videos by slides for searching and browsing. It can
also improve the quality of the videos through projecting the
high-resolution slides back into the videos. Recently many
approaches have been proposed to automatically match slides
to videos [1, 2, 3, 4, 5, 6, 7, 8].

Depending on the capturing systems, the slides may ap-
pear dramatically differently in the video. A dynamic cap-
turing system with one or more cameras that are allowed to
pan, zoom and tilt has the flexibility to capture the presenter,
the slides and the audience or all of them, thus produce more
lively and instructional videos. However, the videos captured
by such a system present various ambiguities between the
captured slide images and the original slides, making the task
of automating synchronization of slides with videos more dif-
ficult. Complications include zooming-in or zooming-out slides,
slides partially occluded by the presenter, and no slide images
due to the camera panning to the presenter or audience. In ad-
dition to these difficulties, some ambiguities come from the
slides themselves such as identical slides and slide animation
that sometimes generates extremely similar slides.

Although the dynamic nature of presentation video pro-
duction poses additional challenges to slide-matching algo-
rithms, it also yields useful cues on slide change, which can

be used to help resolve ambiguities. For example, there usu-
ally is no slide change when the camera is zooming. Simi-
larly, it is more likely that the camera will remain fixed when
there is a slide change.

In this work, we extend our previous work [4] that matches
slides based on visual features alone, and integrates the cam-
era cue into a dynamic HMM in which the state transition
probabilities are dependent on the camera events. The tempo-
ral model also captures the notion that slides are usually pre-
sented sequentially and not randomly, which as shown later
in the paper, can greatly improve the ability of the model in
disambiguating similar slides in the videos.

2. THE SLIDE-MATCHING FRAMEWORK

Our slide-matching framework consists of three phases: key-
point matching, camera event detection, and a dynamic HMM
based on camera events (Fig. 1). In the first phase, frame-
to-slide homographies (i.e the projection transformations be-
tween the slides captured by camera and their original ones),
if available, are found by keypoint matching and all the frames
are classified into3 categories: full-slide (the entire frame
shows the slide content),small-slide (the frame contains
both a slide area and a substantial portion of the scene back-
ground), andno-slide (see [4] for more details). The second
phase detects the camera event between each pair of consec-
utive frames by using the homographies computed and the
frame types classified in the first phase. Finally, in the third
phase, the visual features, temporal information and the cam-
era events are incorporated into a dynamic HMM to find an
optimal sequence of slides matching the frame sequence.

3. SLIDE EVENTS AND CAMERA EVENTS

In a presentation video there are events initiated by the pre-
senter and the producer (camera person). These events deter-
mine the visual appearance of the video frames. For example,
during a presentation, the presenter may make slide changes,
write on the board, play video demonstrations, or browse the
web. Accordingly, the producer may switch cameras, zoom
or pan the camera in order to capture informative and mean-
ingful scenes such as the slide content and the gestures of the
presenter.
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Fig. 1. The flow of our framework.

Interestingly, these two types of events are not indepen-
dent. For example, a camera zoom may indicate that the
slide remains the same. Similarly, the camera is less likely
to change during a video demo or slide change. More gen-
erally, we expect the frame-to-slide homography to remain
across slide changes and the slide to remain unchanged across
camera changes.

An event from the presenter is called aslide event, which
describes how slides change in an presentation. We denote
Sk as a slide event that changes the current sliden to the
slide (n + k). The sign ofk indicates the direction of the
slide change andk = 0 implies that the current slide stays
unchanged.

A camera event describes how the producer operates the
cameras when capturing a presentation. Basic camera oper-
ations include zooming, staying fixed and panning/tilting.In
this paper, we define6 types of camera operations of interest:
zoom-in, zoom-out, stay-fixed, slide-in, slide-outandstay-out.
Note that some of our definitions here are slightly different
from what a reader may know already.Zoom-inmagnifies the
slide area significantly in the current frame with respect to
the previous frame. It happens when the producer increases
the focal length or switches to a camera with a longer focal
length. Zoom-outis defined inversely.Stay-fixedrefers to a
static status of the camera when it focuses on the slides (either
small or full slides) without movement. The other3 events
relate to camera panning or tilting. When the camera moves
from the slide to capture the presenter/audience only (no slide
in the frame), we call itslide-out. The opposite operation
is defined asslide-in. Stay-outis the camera event between
slide-outandslide-inwhen the slide is not being captured. A
camera instay-outmay still zoom or move. We do not further
differentiate between them as they provide little information
about slide change.

4. DETECTING CAMERA EVENTS

Camera motion can be considered as an optical flow problem.
Many approaches have been developed to detect camera op-
erations based on the analysis of the motion vector field (see
[9] for a review). In our case, the previously computed frame-
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Fig. 2. A representation of state transition in our HMM. There is
one null state between each pair of slides (si,sj) to represent the
no-slide frame.

to-slide homographies can be used to spot the slide position
in the frames. This leads us to simply represent each of the
three events (zoom-in, zoom-outandstay-zoom) that ensure
the existence of frame-to-slide homographies by a Gaussian
distribution over the ratio of the slide areas of two consecu-
tive frames. The parameters of the distributions were fitted
directly from a held-out portion of the ground truth data. This
method yielded over99% classification accuracy. In the case
where no homography is available, we use the frame types
classified by the matching algorithm to determine the camera
events. For example, a current small-slide frame and a fol-
lowing no-slide frame indicate a slide-out event between the
two frames.

5. TEMPORAL MODELING OF SLIDE CHANGE

We first describe a standard HMM without using camera in-
formation to model slide change. We then extend it to a dy-
namic HMM in which the model parameters are adjusted lo-
cally by using the camera events.

5.1. A Standard HMM Without Camera Information

Slides do not change randomly in a presentation. Instead, they
almost always advance sequentially according to their order
in the presentation file, though sometimes the sequence may
be interrupted by shifting to the previous slide or jumping
to an arbitrary slide. To capture this notion, we model slide
change by a HMM with slide numbers as hidden states. Since
the number of slides for each presentation can vary greatly,
we consider the slide transition asstateless, i.e we assume
that the transition from slide2 to slide3, for instance, is no
different from a change from slide7 to 8. We also introduce
an auxiliary state“null” (Fig. 2) between each pair of slides
(si, sj) to represent the no-slide frame. Note that the over-
head for adding a“null” node between each pair of slides is
negligible as only one“null” node needs to be actually main-
tained in the implementation due to the stateless assumption
of the slide transition. We estimate the stateless slide tran-
sition probabilities from held out data. Because the data is
limited, we enforce smoothness using a Poisson distribution
as follows,



A(si|sj) =







ηP (−m, λ) m < 0
P (0, λ) m = 0
(1 − η)P (m, λ) m > 0

(1)

wherem = si − sj is the slide event, andP (x, λ) = e−λλx

x!

is the Poisson distribution.η is the frequency of slides going
backwards with respect to going forwards. Bothη andλ were
fitted from a held-out portion of the ground truth data. Values
for η were between 0.05 and 0.09 and values forλ were be-
tween 0.04 and 0.05. Table 4 shows the actual distribution of
slide transition in our data. Because of the high frame sam-
pling rate we used (1 frame/ sec), there is a very high chance
that a slide stays unchanged. It also appears that slides tend
to go forward much more frequently than backward.

We estimate the slide observation probabilityB(fi|sj) of
a framefi given a slidesj by the fraction of the matched key-
points offi to sj over the total number of matched keypoints
of fi to all the slides. When no matching slides are found for
a frame that is marked as a slide frame by the slide matching
algorithm, a uniform probability is assigned.

The optimal sequence of slides matching the frame se-
quence is found by the well-known Viterbi algorithm [10].

5.2. A Dynamic HMM Based on Camera Events

In the standard HMM, the model parameters are derived in
the training data and the parameters remain unchanged dur-
ing the entire inference process. The dynamic model can be
regarded as incorporating context dependent information into
the transition probabilities [11]. In our case, the contextde-
pendent information is the relationship between slide events
and camera events. For example, camera change is associated
with a higher probability that there is no slide change.

More specifically, we condition the state transition prob-
ability through the camera-dependent transition probability
p(si|sj , c). These probabilities are estimated from the held-
out portion of the ground truth data. A trivial modification of
the Viterbi algorithm, namely replacingp(si|sj) byp(si|sj , c)
at each time step based on the camera eventc, is sufficient
to find an optimal slide sequence. Nevertheless, because a
specific camera event may exclude many states that have to
be visited in the standard HMM, we can employ a variant of
Viterbi algorithm such as the one used in [12] to speed up the
inference. For example, if we know a camera is at thestay-
out state (not looking at the slide), the algorithm only needs
to visit the“null” node instead of all nodes.

6. EXPERIMENTS AND RESULTS

The videos used for our evaluation areCONF1 andUNIV

(see [4] for more details).CONF1 is a set of6 videos cap-
tured by three cameras from a corporate conference.UNIV

has3 videos captured by two cameras in a university seminar.

We first sampled the videos by extracting one frame per sec-
ond with software that also added keyframes determined by
shot boundary detection to the frames used. We then manu-
ally constructed a ground truth matching between frames and
slides and the camera events.

We used two evaluation methods in our experiments. First,
as in previous work [4], we considered the number of mis-
recognized frames over the total number of frames. However,
due to the higher sampling rate used here, the error computa-
tion is biased towards slides that appeared for a longer time.
Thus, we used a second method that evaluated the algorithms
based on video segments. A segment is defined as a video clip
with neither slide change nor camera change. The error rate
for a segment is defined as,

e =
# of incorrectly identified frames in the segment

# of total frames in the segment
(2)

Segments with less than2 frames (2 seconds) were ignored in
the experiments.

We measure the performance of three algorithms: the key-
point matching algorithm ( BASE ), the standard HMM (
HMM ) and the camera-event-based HMM ( CHMM ).

The results on the two data sets are presented in Table 1
and 2. Both HMMs greatly outperform the base matching al-
gorithm and CHMM performs the best, showing clearly the
advantage of using the temporal and camera information. As
we expected, there was significant improvement in the match-
ing performance of small slides. In addition, the matching
performance for large slides also improved.

On these two data sets CHMM performs slightly better
than HMM (comparable on UNIV and some improvement on
CONF1). The results are consistent with the observation that
the density and complexity of the camera events in UNIV is
relatively low, and even in CONF1 they are far from extreme.
We thus expect more improvement on more difficult data.

We conducted another experiment on CONF1 to see how
much the temporal and camera cues contribute to the perfor-
mance improvement in the case of small slides. To do this we
ignored the key point matching cues and computed the align-
ment based only on the temporal and camera event model. As
recorded in Table 3, there is still more than60% accuracy
on the small slides for both models even if no slide keypoint
matching information is used. This further demonstrates the
potential contribution of temporal models to a robust slide-
matching system.

Finally, we broke down the results in Table 5 according to
the slide events. The results clearly show that the HMMs can
model the sequential change of slide very well. The HMMs
also showed the potential to handle non-sequential slide change
on CONF1, but failed on KUAT due to very limited examples
of no-sequential change in the data.



Data Alg # full-slide # small-slide # no-slide Total
BASE 132 (2.15) 193 (12.53) 7 (0.09) 332 (2.15)

CONF1 HMM 104 (1.69) 88 (5.71) 9 (0.12) 201 (1.30)
CHMM 97 (1.58) 84 (5.46) 11 (0.14) 192(1.24)
# frames 6147 1540 7742 15429
BASE 85 (2.37) 136 (23.09) 70 (1.83) 291 (3.64)

UNIV HMM 28 (0.78) 42 (7.13) 116 (3.03) 186(2.32)
CHMM 28 (0.78) 40 (6.79) 120 (3.133) 188 (2.35)
# frames 3586 589 3830 8005

Table 1. Frame-oriented overall error rates of the three algo-
rithms, marked by the number of mis-recognized frames and the er-
ror percentage in the brackets on the full-slide , small-slide ,and
no-slide frames.

Data Alg. # full-slide # small-slide # no-slide Total
BASE 7.95 (2.89) 13.41 (15.96) 0.06 (0.02) 21.42 (3.50)

CONF1 HMM 8.46 (3.08) 5.04 (6.00) 0.29 (0.11) 13.79 (2.25)
CHMM 7.71(2.80) 4.84(5.76) 0.29 (0.12) 12.85(2.10)

# segments 275 84 253 612
BASE 3.15 (2.05) 14.93 (19.14) 1.23(0.99) 19.31 (5.41)

UNIV HMM 0.38 (0.25) 3.71 (4.76) 1.45 (1.16) 5.54 (1.55)
CHMM 0.38 (0.25) 3.53(4.52) 1.51 (1.21) 5.42(1.52)

# segments 154 78 125 357

Table 2. Segment-orientedoverall error rates of the three algo-
rithms, marked by the number of mis-recognized segments andthe
error percentage in the brackets on the full-slide , small-slide ,and
no-slide frames.

Alg. RAND HMM DHMM
Err. 81.9/84 (98.0) 30.0/84 (35.7) 27.9/84 (33.2)

Table 3. Segment-orientedoverall error rates of small slides of
the2 HMM models on CONF1, computed by assigning uniform ob-
servation probability to all small slides classified from the keypoint
matching algorithm. The numbers in the brackets are error percent-
age. The very high error rate in the first column reflects a random
guess of the slide numbers.

DataS
−4 Sk<−1 S

−1 S0 S1 Sk>1 Sspan Snoslide

CONF1 2 5 7477 181 17 251 7484
(0.01) (0.03) (48.50) (1.17) (0.11) (1.63) (48.54)

KUAT 1 8 4026 139 1 127 3700
(0.01) (0.10) (50.31) (1.74) (0.01) (1.59) (46.24)

Table 4. The distribution (%) of different slide events in our data.
Here,Sspan refers to the case that the current slide changes to a no-
slide frame due to camera movement whileSnoslide is the case that
no slides appear in two consecutive frames. The high probability of
a slide staying unchanged was caused by the high frame sampling
rate used in our experiments. It also appears that slides tend to go
forward much more frequently than backward.

Data Sk<−1 S
−1 S0 S1 Sk>1 Sspan Snoslide

CONF1 100 20 2.38 9.39 17.65 5.18 0.21
KUAT 100 100 1.56 9.35 100 8.66 3.51

Table 5. The error percentage of the mis-recognized slide events in
the case of CHMM .

7. CONCLUSIONS

We present a general framework to automatically match slides
to presentation videos with high accuracy. Our results suggest
that both the temporal and camera cues are very promising
sources of information to disambiguate the occurrence and
identity of slides in videos when conditions are challenging.
Further complexity in the inter-relation of these events could
be modeled using coupled HMM’s [13]. We are currently
exploiting this approach.
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