
Abstract 

We present a statistical learning approach for 

finding recreational trails in aerial images.  While the 

problem of recognizing relatively straight and well 

defined roadways in digital images has been well 

studied in the literature, the more difficult problem of 

extracting trails has received no attention. However, 

trails and rough roads are less likely to be adequately 

mapped, and change more rapidly over time.  

Automated tools for finding trails will be useful to 

cartographers, recreational users and governments. In 

addition, the methods developed here are applicable to 

the more general problem of finding linear structure.   

Our approach combines local estimates for image 

pixel trail probabilities with the global constraint that 

such pixels must link together to form a path. For the 

local part, we present results using three classification 

techniques.  To construct a global solution (a trail) 

from these probabilities, we propose a global cost 

function that includes both global probability and path 

length.  We show that the addition of a length term 

significantly improves trail finding ability.  However, 

computing the optimal trail becomes intractable as 

known dynamic programming methods do not apply.  

Thus we describe a new splitting heuristic based on 

Dijkstra’s algorithm.  We then further improve upon 

the results with a trail sampling scheme. 

We test our approach on 500 challenging images 

along the 2500 mile continental divide mountain bike 

trail, where assumptions prevalent in the road 

literature are violated. 

 

 

1. Introduction 

There is a growing need for accurate digital 

representations of recreational trails and 4x4 roads.  

Trail maps are not even available for many areas.  

Further, as trails are constructed, closed or rerouted, 

maps quickly become out of date.  Digital 

representations are becoming more desirable as 

technologies such as GPS navigation become more 

widespread. Being able to monitor trails automatically 

will support natural resource management, directly, and 

through research into recreation simulation modeling 

[1]. 

In this paper we develop a semi-automatic method 

for extracting trails from aerial and satellite images.  

We assume that the two end points of the trail are 

given.  Our task is to find the most likely trail that 

connects the two points. 

To develop and validate our system we exploit the 

large amount of training and testing data available 

through GPS technology. This data is collected 

automatically as people recreate and is becoming 

increasingly plentiful.  However, for our purpose, raw 

GPS data has a non-negligible amount of error, and 

thus we automatically lock the GPS data onto the 

nearby trail using the GPS-snakes algorithm [2].  

Thus we can easily acquire a large quantity of aerial 

image data.  We compute relatively simple feature 

vectors and then train systems to estimate the likelihood 

that an observed image patch is on a trail. We 

experimented with three ways to do this: a naïve 

Bayesian classifier, a support vector machine with soft 

output, and a multi-modal mixture model. All methods 

give roughly comparable performance for the raw 

classification task (trail versus not-trail) when tested on 

held out data.  

Even with high quality training data, trails cannot be 

found by local methods alone. Trail image data is too 

varied and too noisy. For example, the trail in Figure 1 

is completely obscured by bushes in places. In other 

cases, trails are mimicked by washes, animal tracks, or 

random alignment of terrain features. Trails can also be 

indistinguishable from the background on occasion. 

Clearly, what further distinguishes trail pixels from 

non-trail ones is that the trail pixels can be linked up to 

go somewhere. In other words, we need to integrate the 
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global condition of a path with the results from our 

classifiers.  We do this by supposing that the per-pixel 

probabilities are an estimate of the amount of energy a 

traveler would have to expend to cross that pixel.  We 

then wish to minimize the total energy along the path. 

This is attractive because it can be done efficiently, 

provided we blindly ignore the fact that we are 

comparing trails of different lengths. In practice this 

approach has some merit, both in the literature and on 

our test set.  But we have found that taking care to 

control the length of the path significantly improves 

performance. 

Adding length information is not trivial. We were 

able to formulate a method similar to Floyd’s minimum 

cost algorithm that can handle a length term, but 

unfortunately this approach has complexity O(N
3
) in 

time and O(N
2
) in space, where N is the number of 

pixels. Since this is computationally prohibitive, we 

instead developed a splitting heuristic based on 

Dijkstra’s algorithm.  This heuristic works by piecing 

together portions of shortest paths using the length 

based global cost function.  We then further improve on 

the heuristic method by randomly sampling trails, since 

the heuristic is constrained to piecing together shortest 

paths. 

Our results on 500 trail images suggest that adding 

length information to the energy formulation 

significantly improves the ability to extract trails over 

naively using the minimum cost formulation.  

2. Previous Work 

We are not aware of previous work focused on 

finding recreational trails in remote sensed images. 

However, the problem of finding roads from such data 

has been well studied, with a variety of approaches 

surveyed in [3]. We briefly review some of what has 

been learned from work on roads below. However, we 

emphasize that trails are more difficult than roads since 

they are narrower, less predictable, less uniform, more 

often obscured, and more often indistinguishable from 

the background. This means that the handling of the 

global constraint is more critical—simply (virtually) 

following the trail will fail much more often than 

following a well maintained road. Features from trails 

are also less reliable, leading to our emphasis on a 

probabilistic treatment and learning the relationship 

between features and category probabilities from data.  

Early work on extracting roads focused on local 

methods, using image processing techniques on local 

pixel neighborhoods.  To determine if pixels are “road” 

or “background” operators such as edge detectors, ridge 

finders, crest detectors, morphological operators and 

even road-specific operators have been tried [4].   

Road tracking [4] extends the local information in 

plausible directions. However, to keep the search space 

reasonable, the assumption that roads generally change 

direction slowly is made—a very reasonable 

simplification in the road domain, but clearly not 

prudent in the case of trails.  

Our approach is closer to that by Fischler et al [5], 

which uses a dynamic programming optimization over 

the pixel lattice. The cost function is based on weights 

determined by local operators. To extend this work to 

trail data would require non-trivial extensions.  First, it 

is not clear how to build reliable operators for the case 

of trails—hence we learn them from data.  Second, 

because even learned trail classifiers can be unreliable, 

the standard dynamic programming optimization can 

result in trails that are too long, relative to their total 

cost. Since trails turn direction more often than roads 

this especially applies.  We instead propose optimizing 

a cost function with an added penalty term that is 

function of length, and present heuristics for computing 

it. 

3. Data Collection 

In order to build a statistical model of trails we require 

training data.  The most obvious approach is to have a 

human operator choose example trail points by 

inspection of an aerial photograph.  This approach 

suffers not only from being manual but it also exhibits a 

typical problem in many machine learning situations: a 

lack of large, quality datasets. 

Instead, we propose using an already existing and 

growing data source: GPS track logs.  Track logs are 

sequences of precise locations that a GPS receiver 

automatically records as a trail user travels.  While GPS 

data is still in some sense manually collected, it is 

relatively easy to collect, and is being collected for 

 

Figure 1: Example USGS aerial photograph, from the Santa 

Rita mountains 



other purposes, even as a part of everyday recreation.  

Inexpensive consumer level GPS receivers are 

increasingly being used to record outdoor trips.  Many 

web sites offer GPS track logs for download, and 

centralized, user submitted databases are on the 

horizon. 

3.1. Aerial Image data 

We use USGS DOQ imagery (Figure 1) because a 

public domain internet source is available for nearly the 

entire United States.  Microsoft’s Terraserver [6] 

efficiently serves these images, which we are able to 

download, on-the-fly, using TopoFusion [7] software.  

Using TopoFusion we are able to seamlessly process 

GPS data from around the country.  As points are 

processed, aerial images are downloaded via the 

internet and cached on local disk to speed up further 

iterations.  This greatly simplified our research effort 

and improves the applicability of the techniques 

developed.  Our approach can be used to extract trails 

for any location in the United States.  We use the 

highest level detail imagery available, which is at a 

resolution of one meter per pixel. 

 

3.2. Pre-processing using GPS-snakes 

Although using GPS provides an abundance of data, the 

quality of the data suffers compared to human extracted 

data.  There are two sources of error: the GPS system 

itself and photo calibration error.  The result is that 

GPS data points sometimes do not lie exactly on 

corresponding trails in aerial images.  These problems 

can be partially addressed by using the GPS-snakes 

algorithm [2]. GPS-snakes can be used to pre-process 

the GPS data, placing it on trails in the neighborhood of 

the data.  The GPS-snakes method draws inspiration 

from the active contour (snakes) model developed by 

Kass et al [8], but it exploits properties of GPS data and 

trail image appearance to correct GPS tracks.  In Figure 

2, original GPS data is shown along with the GPS-

snakes corrected output.  Table 1 shows the positive 

effect of using the GPS-snakes to clean up the data 

before training. 

3.3. Negative (non-trail) examples 

To learn the difference between trails and the 

background we also need non-trail example points.  To 

generate non-trail points we simply sample random 

points in the area covered by the trail points.  This is 

based on the observation that most of the world is not a 

trail.  Thus we select non-trail points which are the 

mean of eight randomly selected trail points. Visual 

inspection confirmed that this process produced good 

selections of negative examples. In all experiments we 

used equal numbers of positive and negative examples.  

4. Statistical Learning 

Naturally we begin by computing feature vectors for 

image regions surrounding each pixel. We use feature 

vectors from the training data to build a classifier that 

estimates the probability that a pixel is on a trail. To 

find trails in a new image, we compute analogous 

feature vectors, and use them as input to the classifier to 

estimate the trail probabilities for the second part of the 

algorithm which finds the path through the pixels. 

While the focus of this work is on the integration of 

low and high level information, we experimented with 

three different systems of probabilistic classification. 

4.1. Computing Feature Vectors 

To capture what trails look like in aerial images we 

use a characterization of texture in the form of 

responses to oriented Gaussian filter kernels [9-11].  

These function as oriented edge detectors, capturing 

edges in the direction perpendicular to the direction the 

trail is traveling.  The kernels are centered at the data 

point and the response at each orientation is used as a 

component of the feature vector.  The final component 

of the feature vector is a simple grayscale histogram in 

a small area surrounding the point. 

We settled on the following parameter values 

which gave good performance on preliminary 

experiments: 12 filter orientations, at a single scale 

(sigma is 2.5 pixels).  The histogram was computed in a 

9x9 window around the pixel. 

Figure 2: GPS track log corrected using GPS-snakes.  

Empty circles: original data.  Smaller filled dots: 

corrected data. 



4.2. Naïve Bayes 

A naïve Bayes classifier operates under the ‘naïve’ 

assumption that all of the feature vector components are 

independent of each other.  This is not the case with our 

vectors, but even when this assumption is violated, 

naïve Bayes often performs well [12].   

We generate two sets of histograms, one for trail 

and one for not trail.  Among each set there is a 

histogram for each component of the feature vector.  

With the histograms computed, the likelihood of a test 

feature vector being trail or not trail is computed simply 

by counting the proportion of training data that fell into 

the bins corresponding to the test vector’s components.  

If the likelihood produced by comparison with the trail 

histograms is greater than the likelihood from the not 

trail histograms, the vector is classified as a trail. 

One issue for the Bayes classifier is the choice of 

the number of histogram bins. To determine this 

number we plotted the performance on some held out 

data of the classifier with varying bin values.  We chose 

32 bins, which was maximal for the Tucson Mountain 

Park dataset.  The plot was relatively flat, indicating 

that performance is insensitive to the number of bins. 

4.3. Support Vector Machine 

We presented the feature vectors to SVM
light

 [13], a C 

implementation of Support Vector Machines [14].  The 

SVM attempts to find a multidimensional cutting plane 

that separates the positive (trail) and negative (non-

trail) examples. We experimented with the four 

available kernel options: linear, polynomial, radial basis 

and sigmoid. We found that the linear cutting plane 

consistently outperformed the other kernel options on 

training and test data. The SVM
light

 software provides 

soft classification which we normalized to use as a 

crude estimate of probability.  

4.4. Multi-modal mixture model 

We also trained a generative multi-modal mixture 

model [15] [16] to classify image points. Here we 

assume that an image pixel and its label (“trail” or 

“not_trail”) are concurrently generated as follows. First, 

a hidden factor, or node, is chosen according to a prior 

distribution. Then the visual features for that pixel and 

its label are generated conditionally independent given 

the node. The label is generated according to a simple 

frequency distribution, and since there are only two 

labels, this reduces to a single number, namely the 

probability of “trail”. The image features are generated 

according to a Gaussian distribution with a diagonal 

covariance matrix. The model for the joint distribution 

for the “trail” label, t, and the feature vector, v, is given 

by: 

P(t,v) = P(t | n)P(v | n)P(n)
n

N

∑  (1) 

where n indexes over nodes, P(t | n)  is the probability 

of trail given the node, P(v | n)  is a Gaussian 

distribution for that node, and P(n) is the node prior. 

Model parameters are learned from the training data 

using the expectation maximization algorithm [17]. We 

verified that the performance of the model is relatively 

robust to a wide range for the number of nodes, N. For 

the results in this paper we used 200 nodes.  

5. Trail Extraction  

In the final step we construct connected pixel sequences 

that represent probable trails, given a classified 

probability image.   The process is semi-automatic, 

meaning we assume that we are given a start and end 

point.  The algorithm then connects the points with an 

optimal path based on the probability image. 

5.1. Trail objective function 

We consider P(not_trail) for a given pixel to be an 

estimate of the energy required to cross that pixel.  The 

idea being that a pixel that is high in trail probability 

(and thus low in non-trail probability) will be easy to 

cross.  We can then compute the global minimum for 

the objective function: 

∑=

N

trailnotPpathf
1

)_()(                (2) 

If we let N vary we can find the above minimum 

efficiently with a shortest path algorithm such as 

Dijkstra’s [18], and doing so leads to a baseline 

algorithm which we test below. However, this favors 

longer paths since we are, in effect, maximizing P(trail) 

along the path.  Figure 3 is an example of an image 

where minimizing (2) resulted in a path that is too long.  

There are situations when a bias for short paths is 

desirable.  For example, in areas where there is a 

genuine lack of information (e.g. trees obstructing the 

trail) the shortest path is a reasonable guess.  There is 

also a notion that trails, though they do not follow the 

shortest Euclidean distance between points, are still 

“going somewhere,” rather than roaming around 

aimlessly.  Therefore, we introduce an empirically 

determined crude length bias for the cost function: 

22 )2,1(/)( vvdlengthpathP ∝  (3) 

where d(v1,v2)  is the Euclidean distance between the 

start and end nodes (constant for a given trail image), 



and length is the total distance of the path which varies 

among hypotheses.  (2) then becomes: 

∑=

N

trailnotP
vvd

length
pathf

1
2

2

)_(
)2,1(

)(     (4) 

Computationally, adding a length term to the 

objective function is difficult. Known fast minimum 

cost methods do not apply since dynamic edge weights 

are introduced into the pixel lattice.  

We have formulated a dynamic programming 

algorithm to compute the minimum path, with length 

prior, that runs in O(N
3
) time, where N is the number of 

pixels in the image.  It is based on enumerating optimal 

paths of a particular length (up to a reasonable cut-off) 

in turn.  Besides being computationally expensive, the 

algorithm also requires O(N
2
) space, making it wholly 

impractical for anything but very small images.  We 

instead develop alternative methods. 

5.2. Recursive Splitting Heuristic 

Since finding the global minimum of (4) is 

computationally prohibitive, we have devised a more 

feasible heuristic method based on the following 

observation.  The optimal path is likely to be composed 

of portions of nearly optimal sum paths.  That is, for 

very short distances, the minimal cost and length 

adjusted cost paths are the same.  

Our heuristic proceeds as follows.  Let v1 and v2 

be the start and end nodes of the path.  We first 

compute the shortest path between v1 and all other 

nodes using Dijkstra’s algorithm.  The cost function 

used is the sum of P(not_trail) as in (2).  We then do the 

same for v2 to all nodes.  Now we find the intermediate 

node, vint, which minimizes (4) along the path 

(v1→vint→v2), where the paths used are the optimal 

P(not_trail) paths computed by Dijkstra’s algorithm.  

The resulting path has the lowest objective value, 

subject to the constraint that only the shortest paths 

from nodes v1 and v2 through an intermediary point 

can be followed.  Under this greedy assumption we 

then proceed by recursing on the two halves of the path.  

Shortest paths and intermediate nodes are computed 

just as before.  The recursion runs to a specified depth 

(we used a recursive depth of two in this work). 

We also cannot allow the resulting path to intersect 

itself.  Checking for intersection is the slowest part of 

the method, taking O(N
2
) time, worst case.  Dijkstra’s 

itself runs very quickly when implemented with a 

Fibonacci heap and is run a constant number of times.   

Figure 3 provides an example where the recursive 

splitting heuristic correctly extracted the trail where 

naïve minimum cost failed. 

5.3. Trail Sampling 

The splitting heuristic introduced in the previous 

section suffers from the limitation that it can only 

choose minimal cost paths between chosen intermediate 

points.  An example of this is shown in Figure 4(a).  

We propose to further lower the objective function (4) 

by sampling random trails in the image. 

We seed the sampler with the lowest cost trail as 

output by the splitting heuristic procedure.  The current 

sample is altered by the following proposals: 

(a) Trail lengthening.  A random point on the trail 

is chosen.  N points are chosen according to a 

Gaussian distribution centered at the chosen 

trail point.  The point with the maximal value 

of P(trail) among these N points is chosen to 

 
(a) 

 
(b) 

Figure 3:  A image from the test set from the Great Divide Mountain Bike Route.  Seed points P1 and P2 were taken from the GPS 

track of the trail.  Resulting extracted trails are shown, comparing the difference between minimum cost and length adjusted paths.  

(a) shows the effect of the trail using minimum cost; since portions of the trail are obscured, the optimal path follows longer side 

trails  (b) shows the correct trail extracted using the recursive splitting heuristic.  The Hausdorff distance between (b) and the 

ground truth GPS track is 49.5.  This is just less than the threshold for correctness.  The only portion “off” trail can be seen in the 

middle portion of (b), where the trail is obscured. 



“pull” the trail to.  The trail is cut at half the 

“pulling” distance away from the chosen point, 

and connected with straight lines. 

(b) Trail shortening.  A random point on the trail 

is chosen.  A normally distributed distance to 

shorten by is chosen.  The trail is then walked 

until this distance is met, and the current trail 

is replaced by a straight line. 

Both proposal types are subject to the constraint 

that intersecting paths are not allowed.  If the proposal 

introduces an intersection, it is rejected. 

Each type of proposal is equally likely to be 

chosen. At each iteration, the objective function (4) is 

evaluated for both the current sample, x
t
, and the 

proposed sample, x’.  Since we want to explore the trail 

space, we allow acceptance of worse proposals 

according to the ratio:   

)'(

)(

xf

xf
t

<α                  (5) 

Where α is drawn from U(0,1).  Though similar to 

the Metropolis Hastings algorithm [19] [20], our 

objective function (4) is not a probability distribution, 

so we are not using Metropolis Hastings as such.  The 

ratio (5) is reversed since we seek the minimum of our 

objective function, rather than the maximum 

probability. The sampler keeps track of the minimum 

trail as it explores the trail space. 

6. Results 

Pixel classification. We present results from two GPS 

datasets, one from the Tucson Mountains and another 

from the Santa Rita range.  The Tucson Mountains are 

lower Sonoran desert terrain while the Santa Ritas are 

higher elevation chaparral.  Negative training points for 

each set were generated using the heuristic proposed in 

§3.3.  Each dataset contains roughly 4000 trail points 

(as well as 4000 non- trail points). 

Each of the three classification models were 

trained on 90% of the data, while a randomly chosen 

10% were held as a test set.  Table 1 presents the 

accuracy rates on the test sets for each of the three 

methods.  There is some variation between the 

methods, but all seem capable of generating the correct 

answer, trail or not trail, roughly 75% of the time.  

Table 1 shows that the effect of pre-processing the data 

using GPS-snakes is significant.  In some cases the 

performance gain is over 10%. 

Due to similar performance of the three pixel 

classification methods, we chose Naïve Bayes since it 

has the shortest runtime. 

Finding trails.  We test our techniques using a 

large and challenging dataset.  The Great Divide 

Mountain Bike Route (GDMBR) is a bicycle path that 

covers 2500 miles along the continental divide of North 

America, from Canada to Mexico.  Using GPS data 

collected along the GDMBR, we train and test a general 

purpose trail finder. 

We trained the Naïve Bayes classifier using GPS 

points collected on the southern half of the GDMBR.  

This corresponds to the states of New Mexico and 

Colorado.   

The northern half (Montana, Idaho and Wyoming) 

was used for testing.  500 trail sections were chosen, at 

random, from the GPS track.  Each trail is associated 

with a 2000x2000 aerial image, whose pixels were then 

classified with Naïve Bayes.  The average trail length is 

3000 meters, with a standard deviation of 820 meters.  

The average straight line distance between start and end 

     
      (a)        (b) 

Figure 4: Trail Finding comparisons.  In (a) the recursive splitting method suffers from the constraint that it can only use strict 

shortest paths to construct global paths.  In this case dynamic programming without a length prior causes the trail finder to 

follow spurious noise.  The sampling technique extracts more of the trail.  (b) shows an example of a poorly visible trail.  All 

methods fail to extract the correct trail, with the sampling technique causing short cutting due to weak trail evidence in the 

image. 



points is 1920 meters, suggesting that the trail segments 

are far from straight. 

 Since the trail follows and crosses the continental 

divide it often traverses steep mountains, which leads to 

frequent turns and switchbacks.  Elevations range from 

2500 ft to 12,000 ft, introducing a wide variety of 

vegetation and soil types. Figure 3 shows one of the test 

images with seed points P1 and P2.   

Table 2 summarizes the results on the test images.   

To measure performance we use the Hausdorff distance 

between the GPS data and the extracted trail.  

Intuitively this means we are measuring the maximum 

distance the extracted trail strays from the truth.  The 

values in the table are the average Hausdorff distances 

for each run of the test set.   

The results show that a significant improvement 

can be gained by penalizing trails by length.  The 

splitting heuristic shows considerable (9.5%) 

improvement and sampling trails seeded with that 

answer gives further improvement (17.7%). 

At first glance, an average Hausdorff distance of 

over 100 meters may seem large.  But we argue that 

these are solid results.  Given that these trails are, on 

average, 3000 meters long, only straying from the trail 

by at most 100 meters means the majority of the trail 

was correctly extracted.   

We define a Hausdorff threshold of 50 meters to 

determine whether a particular trail is “correct.”  If the 

most a solution strays from the ground truth is 50 

meters, it has correctly identified the trail (see Figure 3 

for an example trail at a Hausdorff of 49.5).  Using this 

measure, the sampling technique gets 60% of the 

images correct.  This is impressive given the difficulty 

and high variability of the dataset. We have observed a 

significant number of trail images for which the correct 

answer is highly unlikely to be extracted by any 

process.  This is either because the trail is not visible to 

the human eye or because multiple trails are visible in 

the image, and the GDMBR followed a less likely 

(even to human eyes) path.  Figure 4(b) gives an 

example where all techniques failed to extract the 

correct trail due to weak trail evidence. 

7. Discussion  

We have presented results showing that our approach is 

capable of extracting trails in a wide variety of terrain. 

Key points include using GPS tracks to obtain 

significant quantities of training data, a snakes based 

method to improve the training data, statistical models 

to estimate the probability that pixels are associated 

with trails, and a global constraint that trail pixels must 

link together to form a path.  

We have demonstrated that a naïve implementation 

of minimal cost across the pixel lattice does not 

correctly deal with the length of the path, and that 

formulating the problem with a length prior 

significantly improves performance.   Though a global 

Table 2: Finding trails results.  The table lists the average Hausdorff distance, in meters, between the true trail (GPS data) and the 

extracted trail for 500 random, 2000x2000 images along the Great Divide Mountain Bike Route. Significant improvement is shown 

when the length penalty of the splitting heuristc method is added.  Sampling trails using the same objective function gives even 

further improvement.  Error estimates are provided in parentheses. 

 
Mean Hausdorff Distance Improvement vs. Baseline 

Minimum Cost Dynamic Programming 

(Baseline technique) 
138.7 (9.2) N/A 

Recursive Splitting Heuristic 126.7 (8.1) 9.5% 

Sampling 117.8 (7.8) 17.7% 

 

Table 1:  Accuracy on held-out data for three classification methods.  Using GPS-snakes to pre-process improves the classification 

results significantly. 
 Data set 1 – Tucson 

Mountain Park 

Data set 1 – Pre-processed 

Snakes 
Data set 2 – Santa Ritas 

Data set 2 – Pre-

processed Snakes 

Naive Bayes 
73.9% 76.1% 73.1% 78.5% 

Support Vector Machines 
74.6% 83.0% 71.3% 81.2% 

Multi Modal Mixture Model 
75.2% 79.2% 71.4% 81.5% 

 



solution that accounts for length is not possible, we 

have presented a heuristic method, and further 

improved upon the results by sampling. 

The problem underlying our task is quite common. 

In particular, it is often the case that local features are 

required for extraction, but are unusable without a 

global path constraint.  One example is the extraction of 

neuron branching structure from images. Helping 

neuroscientists do so automatically would increase the 

scale of the data that they can process.  We are pursuing 

this important alternative application domain.  
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   (a)            (b) 

Figure 5: Further Trail Examples.  (a) shows a successfully extracted trail despite occlusion and switchbacks.  In (b) a very 

difficult image is shown.  All methods fail to extract the faint trail.  


