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Abstract

We present an approach for learning stochastic geometridelmmf object cat-
egories from single view images. We focus here on modelsesgfle as a
spatially contiguous assemblage of blocks. Model topeegire learned across
groups of images, and one or more such topologies is linkexhtobject cate-
gory (e.g. chairs). Fitting learned topologies to an image loe used to identify
the object class, as well as detail its geometry. The labesdeyond labeling
objects, as it provides the geometric structure of padicuistances. We learn
the models using joint statistical inference over categramameters, camera pa-
rameters, and instance parameters. These produce an ikeld®bd through a
statistical imaging model. We use trans-dimensional sengpb explore topology
hypotheses, and alternate between Metropolis-Hastingstmechastic dynamics
to explore instance parameters. Experiments on imagesmfute objects such
as tables and chairs suggest that this is an effective agpfoalearning models
that encode simple representations of category geomedirtharstatistics thereof,
and support inferring both category and geometry on heldiogie view images.

1 Introduction

In this paper we develop an approach to learn stochastic 8eggic models of object categories

from single view images. Exploiting such models for objemtagnition systems enables going

beyond simple labeling. In particular, tting such modelsems up opportunities to reason about
function or utility, how the particular object integratega the scene (i.e., perhaps it is an obsta-
cle), how the form of the particular instance is related teeos in its category (i.e., perhaps it is a
particularly tall and narrow one), and how categories thedves are related.

Capturing the wide variation in both topology and geometithinw object categories, and nding
good estimates for the underlying statistics, suggestsge lscale learning approach. We propose
exploiting the growing number of labeled single-view image learn such models. While our
approach is trivially extendable to exploit multiple vieafshe same object, large quantities of such
data is rare. Further, the key issue is to learn about thati@mi of the category. Put differently,
if we are limited to 100 images, we would prefer to have 100gesaof different examples, rather
than, say, 10 views of 10 examples.

Representing, learning, and using object statistical ggooproperties is potentially simpler in the
context of 3D models. In contrast, statistical models tinabele image-based appearance character-
istics and/or part con guration statistics must deal witinfounds due to the imaging process. For
example, right angles in 3D can have a wide variety of angléke image plane, leading to using
the same representations for both structure variation aed pariation. This means that the repre-
sented geometry is less speci ¢ and less informative. Bytrest, encoding the structure variation
in 3D models is simpler and more informative because theyirgted to the object alone.

To deal with the effect of an unknown camera, we estimate éineeca parameters simultaneously
while tting the model hypothesis. A 3D model hypothesis isedatively strong hint as to what



the camera might be. Further, we make the observation thatathations due to standard camera
projection are quite unlike typical category variation.nde, in the context of a given object model
hypothesis, the fact that the camera is not known is not a sigrt impediment, and much can be
estimated about the camera under that hypothesis.

We develop our approach with object models that are exfinlesas a spatially contiguous assem-
blage of blocks. We include in the model a constraint on ragidgles between blocks. We further
simplify matters by considering images where there are mahidistracting features in the back-
ground. We experiment with images from ve categories ohfture objects. Within this domain,

we are able to automatically learn topologies. The modeistitan be used to identify the object
category using statistical inference. Recognition of olgjén clutter is likely effective with this ap-

proach, but we have yet to integrate support for occlusiasbggct parts into our inference process.

We learn the parameters of each category model using Bayederence over multiple image
examples for the category. Thus we have a humber of parasrsgiecifying the category topology
that apply to all images of objects from the category. Furthg a side effect, the inference process
nds instance parameters that apply speci cally to eacleobjFor example, all tables have legs and
a top, but the proportions of the parts differ among the imsga. In addition, the camera parameters
for each image are determined, as these are simultaneousligh the object models. The object
and camera hypotheses are combined with an imaging modebtap the image likelihood that
drives the inference process.

For learning we need to nd parameters that give a high If@did of the data from multiple ex-
amples. Because we are searching for model topologies, e toesearch among models with
varying dimension. For this we use the trans-dimensiomalpdiag framework [7, 8]. We explore
the posterior space within a given probability space of e@dar dimension by combining standard
Metropolis-Hastings [1, 14], with stochastic dynamics][18s developed further below, these two
methods have complementary strengths for our problem. frapily, we arrange the sampling so
that the hybrid of samplers are guaranteed to converge foterior distribution. This ensures that
the space will be completely explored, given enough time.

Related work. Most work on learning representations for object categdnis focused on image-

based appearance characteristics and/or part con guratiatistics (e.g., [4, 5, 6, 12, 13, 24]).

These approaches typically rely on effective descripttiat tare somewhat resilient to pose
change (e.g., [16]). A second force favoring learning 2Drespntations is the explosion of read-
ily available images compared with that for 3D structured #imus treating category learning as
statistical pattern recognition is more convenient in taeadlomain (2D images). However, some
researchers have started imposing more projective gepiimédrthe spatial models. For example,
Savarese and Fei-Fei [19, 20] build a model where arranged @i linked by a fundamental ma-
trix. Their training process is helped by multiple exampdéshe same objects, but notably they
are able to use training data with clutter. Their approadtifierent than ours in that models are
built more bottom up, and this process is somewhat relianherpresence of surface textures. A
different strategy proposed by Hoeim et al. [9] is to t a def@ble 3D blob to cars, driven largely

by appearance cues mapped onto the model. Our work alsegétatecent efforts in learning ab-

stract topologies [11, 26] and structure models for 2D insagfeobjects constrained by grammar
representations [29, 30]. Also relevant is a large body dépivork on representing objects with

3D parts [2, 3, 28] and detecting objects in images given aigee3D model [10, 15, 25], such

as one for machined parts in an industrial setting. Finally,have also been inspired by work
on tting deformable models of known topology to 2D imagedilie case of human pose estima-
tion (e.g., [17, 22, 23]).

2 Modeling object category structure

We use a generative model for image features correspondiegamples from object categories
(Fig. 1). A category is associated with a sampling from catgdevel parameters which are the
number of partsn, their interconnections (topology), the structure statistias;, and the camera
statistics,rs. Associating camera distributional parameters with agmteallows us to exploit
regularity in how different objects are photographed dydigarning. We support clusters within
categories to model multiple structural possibilitieg(echairs with and without arm rests). The
cluster variablez, selects a category topology and structure distributipaedmeters for attachment
locations and part sizes. We denote the speci ¢ values fartiqular example bg. Similarly, we



Figure 1: Graphical model for the generative approach
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denote the camera capturing it by The projected model image then generates image features,
x, for which we use edge points and surface pixels. In sumntlagyparameters for an image are
uM = (c;st;re;rs;n).

Given a set oD images containing examples of an object category, our gdal learn the model

other words, the camera and the geometry of the training pkemare t collaterally.

We separate the join;g density jnto a likelihood and prior
p XGE£M = pM(X;C;Sjtireirs) P (tireirsin); (1)

where we use the notatigsi”) (¢ for a density function corresponding toparts. Conditioned on
the category parameters, we assume thabDtteets of image features and instance parameters are
independent, giving

\D
pPM(X;CiSjtireirs) = p™(XaiCaiSajtireirs): )
d=1
The feature data and structure parameters are generateslibycategory cluster with weights and
distributions de ned byrs = (¥ 5;8s). As previously mentioned, the camera is shared across
clusters, and drawn from a distribution de ned by = (* ;8 ¢). We formalize the likelihood of
an object, camera, and image features umndietlusters as

p™ (Xg;CaiSait;Teirs)

®)

b4
= . Y P(nm)(x(ﬂ,cd;smd; P(Cdjé7c;§c} P(nm)(smdjt{ry;l sm;§sm;:

m Image Camera Object

We arrive at equation (3) by introducing a binary assignnvexctorz for each image feature set,
such thatz,, =1 if the m™ cluster generated it ar@lotherwise. The cluster weights are then given

by Y4, = p(zm =1) .
For the prior probability distribution, we assume categpayameter independence, with the clus-
tered topologies conditionally independent given the nainaf parts. The prior in (1) becomes

\M
pPM(t;reirsin) = p(re) P (tm j0m) P (Fsm) P(Nm) : (4)
m=1
For category parameters in the camera and structure madedsdr s, we use Gaussian statistics
with weak Gamma priors that are empirically chosen. We sehtimber of parts in the object sub-
categoriesn to be geometrically distributed. We set the prior over edgéke topology givem to
be uniform.

2.1 Object model

We model object structure as a set of connected three-dioraislock constructs representing
object parts. We account for symmetric structure in an dlgategory, e.g., legs of a table or chair,



Figure 2: The camera model is constrained to reduce the atyiigtro-
duced in learning from a single view of an object. We positioe camera at
a xed distance and direct its focus at the origin; rotatismlilowed about the
x-axis. Since the object model is allowed to move about theesaed rotate,
this model is capable of capturing most images of a scene.

by introducing compound block constructs. We de ne two ¢omgs for symmetrically aligned
pairs (2) or quartets (4) of blocks. Unless otherwise spti we will use blocks to specify both
simple blocks and compound blocks as they handled similarly

The connections between blocks are made at a point on adjgzeallel faces. We consider the
organization of these connections as a graph de ning thettral topology of an object category,
where the nodes in the graph represent structural partsheneliges give the connections. We use
directed edges, inducing attachment dependence amorsg part

Each block has three internal parameters representingdth vheight, and length. Blocks repre-
senting symmetric pairs or quartets have one or two exti@npaters de ning the relative positioning
of the sub-blocks Blocks potentially have two externalcttaent parameters v where one other

is connected. We further constrain blocks to attach to at ms other block, giving a directed tree
for the topology and enabling conditional independencerayradtachments. Note that blocks can
be visually “attached” to additional blocks that they altautt representing them as true attachments
makes the model more complex and is not necessary. Intyjtthe model is much like physically
building a piece of furniture block by block, but saving oniglby only connecting an added block
to one other block. Despite its simplicity, this model capraximate a surprising range of man
made objects.

For a set ofn connected blocks of the forma = (w; h; I; uq; vq;:::), the structure model is
S=(";p o; b1;:::;bp). We position the connected blocks in an object coordinatéesy de ned
by a pointp, 2 R3 on one of the blocks andyaaxis rotation angle, , about this position. Since
we constrain the blocks to be connected at right angles @llpkiaces, the position of other blocks
within the object coordinate system is entirely de ned flpyand the attachments points between
blocks.

The object structure instance parameters are assumedi@adstributed according ts; 8§ s in
the likelihood (3). Since the instance parameters in theatlypodel are conditionally independent
given the category, the covariance matrix is diagonal. Iirfar a blockby attaching td; on faces

de ned by thek™ size parameter, the topology edge setis de netias i; j; k : b; A‘k b;

2.2 Camera model

A full speci cation of the camera and the object positionsppand scale leads to a redundant set
of parameters. We choose a minimal set for inference thainefull expressiveness as follows.
Since we are unable to distinguish the actual size of an bhjem its distance to the camera, we
constrain the camera to be at a xed distance from the woiilgirarWe reduce potential ambiguity
from objects of interest being variably positionedRf by constraining the camera to always look
at the world origin. Because we allow an object to rotate adoits vertical axis, we only need to
specify the camera zenith angke, Thus we set the horizontatcoordinate of the camera in the
world to zero and allow! to be the only variable extrinsic parameter. In other wotls,position
of the camera is constrained to a circular arc onytfeplane (Figure 2). We model the amount of
perspective in the image from the camera by parameteritsrfgéal lengthf . Our camera instance
parameters are thus= (#; f; s), where# 2 [j %42;%=2], andf;s > 0. The camera instance
parameters in (3) are modeled as Gaussian with categorynpteses' ;8 <.

2.3 Image model

We represent an image as a collection of detected featusersdtare statistically generated by an
instance of our object and camera. Each image feature satssagy from a corresponding feature
generator that depends on projected object informationtH®work we generate edge points from
projected object contours and image foreground from cdlsteface points (Figure 3).
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We assume that feature responses are conditionally indepegiven the model and that tla2
different types of features are also independent. Dendtiegletected feature sets in & image

by xg = Xq1;:::; X4c , We expand the image component of equation (3) to
_ Y ¥x (nm)
p("™) (Xqj Cdi Smastm) = fug" (Xdgi) ®)
g=1i=1

The functionf ﬁgm)(Q measures the likelihood of a feature generator produciagekponse of a

detector at each pixel using our object and camera moddisctizE construction and implementa-
tion of the edge and surface point generators is intricate tlaus we only brie y summarize them.

Please refer to our technical report [21] for more details.

Edge point generator. We model edge point location and orientation as generated firojected
3D contours of our object model. Since the feature geneli&dihood in (5) is computed over all
detection responses in an image, we de ne the edge gendéikatidrood as

¥

fuxi) = eu(xi)® ¢ed(x)ME 6)
i=1 i=1
where the probability density functios,(9 gives the likelihood of detected edge point at tHe
pixel, ande’ (¢ is the density for pixel locations not containing an edgenpdrhe indicatols is 1
if the pixel Is an edge point ar@lotherwise. This can )be approximated by [21]

X VX
fu(xi) Ya eu(xi)® el

i=1 i=1

Chtes (7)
whereebNgbg andemg;“ are the probabilities of background and missing detectmuN pg andN miss
are the number of background and missing detections. Ttsitgen approximates, by estimating
the most likely correspondence between observed edgesmdtmodel edges.

To compute the edge point densiy, we assume correspondence and use thedge point gen-
erated from th¢ ™ model point as a Gaussian distributed displacerdgnin the direction perpen-
dicular of the projected model contour. We further de ne gradient direction of the generated
edge point to have Gaussian error in its angle differefjcavith the perpendicular direction of the
projected contour. Iin; is a the model point assumed to genesatethen

eu(xi) = ce N (dj ;0; %) N (A ;0;%) (8)
where the perpendicular distance betwegrandm; and angular difference between edge point
gradientg; and model¢contour perpendiculas are denedd; = kx; i mjk andA; =

cog ! IgiT vj =kgikkv; k . The range oflj is, 0, and the angldy; is in[0; 1].

Surface point generator. Surface points are the projected points of viewable susfat®ur ob-
ject model. Image foreground pixels are found udinmeans clustering on pixel intensities. Setting
k = 2 works well as our training images were selected to have nahohatter. Surface point detec-
tions intersecting with model surface projection leadsotar feasily identi able cases: foreground,
background, missing, and noise. Similar to the edge poinegdor, the surface point generator
likelihood expands to

VX

Fu(xi) = 5" Sy Shoer® Shas 9)
i=1



3 Learning

To learn a category model, we sample the postepiog, ™) j X ¢/ p'X:E (”)¢, to nd good pa-
rameters shared by images of multiple object examples fhencategory. Given enough iterations,
a good sampler converges to the target distribution and amalvalue can be readily discovered
in the process. However, our posterior distribution is higtonvoluted with many sharp, narrow
ridges for close ts to the edge points and foreground. Inadmmain, as in many similar problems,
standard sampling techniques tend to get trapped in thesé déatrema for long periods of time.
Our strategy for inference is to combine a mixture of sangptechniques with different strengths
in exploring the posterior distribution while still maiiéng convergence conditions.

Our sampling space is over all category and instance paeasfer a set of input images. We denote
the space over an instance of the camera and object modéels \pérts asC £ s, LetT™ pe

the space over all topologies aR§"” £ R{"™ over all category statistics. The complete sampling
space withm subcategories arld instances is then de ned as

[
= cPl £ sMP g Mg RM g R (10)
n2Nm

Our goal is to sample the posterior with(™ 2 - such that we nd the set of parameters that
maximizes it. Since the number of parameters in the sampliage is a unknown, some proposals
must change the model dimension. In particular, thesg movegfollowing the terminology of Tu
and Zhu [27]) arise from changes in topolo@iffusion movesnake changes to parameters within
a given topology. We cycle between the two kinds of moves.

Diffusion moves for sampling within topology. We found that a multivariate Gaussian with small
covariance values on the diagonal to be a good proposaibditm for the instance parameters.
Proposals for block size changes are done in one of two wagding or shifting attached blocks.
We found that both are useful good exploration of the objacicture parameter space. Category
parameters were sampled by making proposals from the Gamiara.p

Using standard Metropolis-Hastings (MH) [1, 14], the pregd moves are accepted with probability
. )
1. P §X) o(u™) ™)
(M ) X) gt j ()

3

® @™ =min

11)

The MH diffusion moves exhibit a random walk behavior and tate extended periods of time
with many rejections to converge and properly mix well iniogg of high probability in the target
distribution. Hence we occasionally follow a hybrid Markohain based on stochastic dynamics,
where our joint density is used in a potential energy functitVe use the common leapfrog dis-
cretization [18] to follow the dynamics and sample from phapace. The necessary derivative
calculations are approximated using numerical diffesgian (details in [21]).

Jump moves for topology changesFor jump moves, we use the trans-dimensional sampling ap-

proach outlined by Green [7]. For example, in the case of elkdbirth in the model, we modify the

standard MH acceptance probability to
3 .

® ™Y =min

J
CopEm Xy reZ @ty -
Cp(MX)qB; D) e @um; bt

The jump proposal distribution generates a new block ardtlathent edge in the topology that are
directly used in the proposed object model. Hence, the ehahgariable factor in the Jacobian
reduces to 1. The probability of selecting a birth move ve@sdeath move is given by the ratio of
r4=rp, which we have also de ned to be 1. The complimentary blocktklenove is similar with the
inverse ratio of posterior and proposal distributions. \§lditonally de ne split and merge moves.
These are essential moves in our case because the samptegeffierates blocks with strong partial
ts and proposing splitting it is often accepted.

4 Results

We evaluated our model and its inference with image setsroftfue categories, including tables,
chairs, sofas, footstools, and desks. We have 30 imageslircategory containing a single arbitrary

12)
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Predicted | Table Chair Footstool Sofa Desk

“ Table 10 5 4 0 2
Chair 5 9 10 5 3

Footstool 0 0 1 3 1

a b Sofa 0 1 0 7 3

(@) () Desk 0 0 0 0 6

Figure 4: Generated samples of tables (a) and chairs (b)tfreriearned structure topology and sta-
tistical category parameters. The table shows the confusitrix for object category recognition.

view of the object instance. The images we selected for ota get have the furniture object
prominently in the foreground. This enables focusing orduatang how well we learn 3D structure
models of objects.

Inference of the object and camera instances was done octetbtedge and surface points in the
images. We applied a Canny-based detector for the edgeslirireage, using the same parameter-
ization each time. Thus, the images contain some edge pmntsdered noise or that are missing
from obvious contours. To extract the foreground, we appiielynamic-threshold discovered in
each image with &-means algorithm. Since the furniture objects in the imgmesarily occupy
the image foreground, the detection is quite effective.

We learned the object structure for each category over anbgeé subset of our data for training
purposes. We initialized each run of the sampler with a rendoaw of the category and instance
parameters. This is accomplished by rst sampling the pigorthe object position, rotation and
camera view; initially there are no structural elementhimmodel. We then sample the likelihoods
for the instance parameters. The reversible-jump movesearsampler iteratively propose adding
and removing object constructs to the model. The mixture ofen in the sampler was 1-to-1 for
jump and diffusion and very infrequently performing a stasfic dynamics chain. Figure 6 shows
examples of learned furniture categories and their ingtmite images after 100K iterations. We
visualize the inferred structure topology and statisticEigure 4 with generated samples from the
learned table and chair categories. We observe that théotppof the object structure is quickly
established after roughly 10K iterations, this can be seéfigure 5, which shows the simultaneous
inference of two table instances through roughly 10K iferst.

We tested the recognition ability of the learned models oeld but 15-image subset of our data for
each category. For each image, we draw a random sample feooatbgory statistics and a topology
and begin the diffusion sampling process to tit. The bestrayl t according to the joint density

is declared the predicted category. The confusion matmvshin Figure 4 shows mixed results.
Overall, recognition is substantively better than cha2€84), but we expect that much better results
are possible with our approach. We conclude from the leammadkls and confusion matrix that the
chair topology shares much of its structure with the othéegaries and causes the most mistakes.
We continue to experiment with larger training data setsstelring category structure, and longer
run times to get better structure ts in the dif cult trairgnexamples, each of which could help
resolve this confusion.

T ™7 Ty ™M W ™Y

Figure 5: From left to right, successive random samples f2arfi15 table instances, each after 2K
iterations of model inference. The category topology aatistics are learned simultaneously from
the set of images; the form of the structure is shared acnsarices.



Figure 6: Learning the topology of furniture objects. Sdtsantiguous blocks were t across ve
image data sets. Model tting is done jointly for the fteemages of each set. The ts for the
training examples is shown by the blocks drawn in red. Detketige points are shown in green.
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