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Abstract

We present an approach for learning stochastic geometric models of object cat-
egories from single view images. We focus here on models expressible as a
spatially contiguous assemblage of blocks. Model topologies are learned across
groups of images, and one or more such topologies is linked toan object cate-
gory (e.g. chairs). Fitting learned topologies to an image can be used to identify
the object class, as well as detail its geometry. The latter goes beyond labeling
objects, as it provides the geometric structure of particular instances. We learn
the models using joint statistical inference over categoryparameters, camera pa-
rameters, and instance parameters. These produce an image likelihood through a
statistical imaging model. We use trans-dimensional sampling to explore topology
hypotheses, and alternate between Metropolis-Hastings and stochastic dynamics
to explore instance parameters. Experiments on images of furniture objects such
as tables and chairs suggest that this is an effective approach for learning models
that encode simple representations of category geometry and the statistics thereof,
and support inferring both category and geometry on held outsingle view images.

1 Introduction

In this paper we develop an approach to learn stochastic 3D geometric models of object categories
from single view images. Exploiting such models for object recognition systems enables going
beyond simple labeling. In particular, �tting such models opens up opportunities to reason about
function or utility, how the particular object integrates into the scene (i.e., perhaps it is an obsta-
cle), how the form of the particular instance is related to others in its category (i.e., perhaps it is a
particularly tall and narrow one), and how categories themselves are related.

Capturing the wide variation in both topology and geometry within object categories, and �nding
good estimates for the underlying statistics, suggests a large scale learning approach. We propose
exploiting the growing number of labeled single-view images to learn such models. While our
approach is trivially extendable to exploit multiple viewsof the same object, large quantities of such
data is rare. Further, the key issue is to learn about the variation of the category. Put differently,
if we are limited to 100 images, we would prefer to have 100 images of different examples, rather
than, say, 10 views of 10 examples.

Representing, learning, and using object statistical geometric properties is potentially simpler in the
context of 3D models. In contrast, statistical models that encode image-based appearance character-
istics and/or part con�guration statistics must deal with confounds due to the imaging process. For
example, right angles in 3D can have a wide variety of angles in the image plane, leading to using
the same representations for both structure variation and pose variation. This means that the repre-
sented geometry is less speci�c and less informative. By contrast, encoding the structure variation
in 3D models is simpler and more informative because they arelinked to the object alone.

To deal with the effect of an unknown camera, we estimate the camera parameters simultaneously
while �tting the model hypothesis. A 3D model hypothesis is arelatively strong hint as to what
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the camera might be. Further, we make the observation that the variations due to standard camera
projection are quite unlike typical category variation. Hence, in the context of a given object model
hypothesis, the fact that the camera is not known is not a signi�cant impediment, and much can be
estimated about the camera under that hypothesis.

We develop our approach with object models that are expressible as a spatially contiguous assem-
blage of blocks. We include in the model a constraint on rightangles between blocks. We further
simplify matters by considering images where there are minimal distracting features in the back-
ground. We experiment with images from �ve categories of furniture objects. Within this domain,
we are able to automatically learn topologies. The models can then be used to identify the object
category using statistical inference. Recognition of objects in clutter is likely effective with this ap-
proach, but we have yet to integrate support for occlusion ofobject parts into our inference process.

We learn the parameters of each category model using Bayesian inference over multiple image
examples for the category. Thus we have a number of parameters specifying the category topology
that apply to all images of objects from the category. Further, as a side effect, the inference process
�nds instance parameters that apply speci�cally to each object. For example, all tables have legs and
a top, but the proportions of the parts differ among the instances. In addition, the camera parameters
for each image are determined, as these are simultaneously �t with the object models. The object
and camera hypotheses are combined with an imaging model to provide the image likelihood that
drives the inference process.

For learning we need to �nd parameters that give a high likelihood of the data from multiple ex-
amples. Because we are searching for model topologies, we need to search among models with
varying dimension. For this we use the trans-dimensional sampling framework [7, 8]. We explore
the posterior space within a given probability space of a particular dimension by combining standard
Metropolis-Hastings [1, 14], with stochastic dynamics [18]. As developed further below, these two
methods have complementary strengths for our problem. Importantly, we arrange the sampling so
that the hybrid of samplers are guaranteed to converge to theposterior distribution. This ensures that
the space will be completely explored, given enough time.

Related work. Most work on learning representations for object categories has focused on image-
based appearance characteristics and/or part con�guration statistics (e.g., [4, 5, 6, 12, 13, 24]).
These approaches typically rely on effective descriptors that are somewhat resilient to pose
change (e.g., [16]). A second force favoring learning 2D representations is the explosion of read-
ily available images compared with that for 3D structure, and thus treating category learning as
statistical pattern recognition is more convenient in the data domain (2D images). However, some
researchers have started imposing more projective geometry into the spatial models. For example,
Savarese and Fei-Fei [19, 20] build a model where arranged parts are linked by a fundamental ma-
trix. Their training process is helped by multiple examplesof the same objects, but notably they
are able to use training data with clutter. Their approach isdifferent than ours in that models are
built more bottom up, and this process is somewhat reliant onthe presence of surface textures. A
different strategy proposed by Hoeim et al. [9] is to �t a deformable 3D blob to cars, driven largely
by appearance cues mapped onto the model. Our work also relates to recent efforts in learning ab-
stract topologies [11, 26] and structure models for 2D images of objects constrained by grammar
representations [29, 30]. Also relevant is a large body of older work on representing objects with
3D parts [2, 3, 28] and detecting objects in images given a precise 3D model [10, 15, 25], such
as one for machined parts in an industrial setting. Finally,we have also been inspired by work
on �tting deformable models of known topology to 2D images inthe case of human pose estima-
tion (e.g., [17, 22, 23]).

2 Modeling object category structure

We use a generative model for image features corresponding to examples from object categories
(Fig. 1). A category is associated with a sampling from category level parameters which are the
number of parts,n, their interconnections (topology),t , the structure statisticsr s, and the camera
statistics,r s. Associating camera distributional parameters with a category allows us to exploit
regularity in how different objects are photographed during learning. We support clusters within
categories to model multiple structural possibilities (e.g., chairs with and without arm rests). The
cluster variable,z, selects a category topology and structure distributionalparameters for attachment
locations and part sizes. We denote the speci�c values for a particular example bys. Similarly, we
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Figure 1: Graphical model for the generative approach
to images of objects from categories described by
stochastic geometric models. The category level param-
eters are the number of parts,n, their interconnections
(topology),t , the structure statisticsr s, and the camera
statistics,r s. Hyperparameters for category level pa-
rameters are omitted for clarity. A sample of category
level parameters provides a statistical model for a given
category, which is then sampled for the camera and ob-
ject structure valuescd andsd, optionally selected from
a cluster within the category byzd. cd andsd yield a
distribution over image featuresxd.

denote the camera capturing it byc. The projected model image then generates image features,
x, for which we use edge points and surface pixels. In summary,the parameters for an image are
µ(n ) = ( c; s; t ; r c ; r s; n).

Given a set ofD images containing examples of an object category, our goal is to learn the model
£ (n ) generating them from detected features setsX = x1; : : : ; xD . In addition to category-level
parameters shared across instances which is of most interest, £ (n ) comprises camera modelsC =
c1; : : : ; cD and structure part parametersS = s1; : : : ; sD assuming a hard cluster assignment. In
other words, the camera and the geometry of the training examples are �t collaterally.

We separate the joint density into a likelihood and prior

p
³

X ; £ (n )
´

= p(n ) (X ; C; S j t ; r c ; r s) p(n ) (t ; r c ; r s; n) ; (1)

where we use the notationp(n ) (¢) for a density function corresponding ton parts. Conditioned on
the category parameters, we assume that theD sets of image features and instance parameters are
independent, giving

p(n ) (X ; C; S j t ; r c ; r s) =
DY

d=1

p(n ) (xd; cd; sd j t ; r c ; r s) : (2)

The feature data and structure parameters are generated by asub-category cluster with weights and
distributions de�ned byr s = ( ¼; ¹ s; § s). As previously mentioned, the camera is shared across
clusters, and drawn from a distribution de�ned byr c = ( ¹ c ; § c ). We formalize the likelihood of
an object, camera, and image features underM clusters as

p(n ) (xd; cd; sd j t ; r c ; r s)

=
MX

m =1

¼m p(n m ) (xd j cd; smd )
| {z }

Image

p(cd j ¹ c ; § c )
| {z }

Camera

p(n m ) (smd j t m ; ¹ sm ; § sm )
| {z }

Object

: (3)

We arrive at equation (3) by introducing a binary assignmentvectorz for each image feature set,
such thatzm = 1 if the mth cluster generated it and0 otherwise. The cluster weights are then given
by ¼m = p(zm =1) .

For the prior probability distribution, we assume categoryparameter independence, with the clus-
tered topologies conditionally independent given the number of parts. The prior in (1) becomes

p(n ) (t ; r c ; r s; n) = p(r c )
MY

m =1

p(n m ) (t m j nm ) p(n m ) (r sm ) p(nm ) : (4)

For category parameters in the camera and structure models,r c andr s, we use Gaussian statistics
with weak Gamma priors that are empirically chosen. We set the number of parts in the object sub-
categories,n to be geometrically distributed. We set the prior over edgesin the topology givenn to
be uniform.

2.1 Object model

We model object structure as a set of connected three-dimensional block constructs representing
object parts. We account for symmetric structure in an object category, e.g., legs of a table or chair,
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Figure 2: The camera model is constrained to reduce the ambiguity intro-
duced in learning from a single view of an object. We positionthe camera at
a �xed distance and direct its focus at the origin; rotation is allowed about the
x-axis. Since the object model is allowed to move about the scene and rotate,
this model is capable of capturing most images of a scene.

by introducing compound block constructs. We de�ne two constructs for symmetrically aligned
pairs (2) or quartets (4) of blocks. Unless otherwise speci�ed, we will use blocks to specify both
simple blocks and compound blocks as they handled similarly.

The connections between blocks are made at a point on adjacent, parallel faces. We consider the
organization of these connections as a graph de�ning the structural topology of an object category,
where the nodes in the graph represent structural parts and the edges give the connections. We use
directed edges, inducing attachment dependence among parts.

Each block has three internal parameters representing its width, height, and length. Blocks repre-
senting symmetric pairs or quartets have one or two extra parameters de�ning the relative positioning
of the sub-blocks Blocks potentially have two external attachment parametersu; v where one other
is connected. We further constrain blocks to attach to at most one other block, giving a directed tree
for the topology and enabling conditional independence among attachments. Note that blocks can
be visually “attached” to additional blocks that they abut,but representing them as true attachments
makes the model more complex and is not necessary. Intuitively, the model is much like physically
building a piece of furniture block by block, but saving on glue by only connecting an added block
to one other block. Despite its simplicity, this model can approximate a surprising range of man
made objects.

For a set ofn connected blocks of the formb = ( w; h; l; u1; v1; : : :), the structure model is
s = ( '; p o; b1; : : : ; bn ). We position the connected blocks in an object coordinate system de�ned
by a pointpo 2 R3 on one of the blocks and ay-axis rotation angle,' , about this position. Since
we constrain the blocks to be connected at right angles on parallel faces, the position of other blocks
within the object coordinate system is entirely de�ned bypo and the attachments points between
blocks.

The object structure instance parameters are assumed Gaussian distributed according to¹ s ; § s in
the likelihood (3). Since the instance parameters in the object model are conditionally independent
given the category, the covariance matrix is diagonal. Finally, for a blockb i attaching tob j on faces

de�ned by thekth size parameter, the topology edge set is de�ned ast =
³

i; j; k : b i
kÃ¡ b j

´
.

2.2 Camera model

A full speci�cation of the camera and the object position, pose, and scale leads to a redundant set
of parameters. We choose a minimal set for inference that retains full expressiveness as follows.
Since we are unable to distinguish the actual size of an object from its distance to the camera, we
constrain the camera to be at a �xed distance from the world origin. We reduce potential ambiguity
from objects of interest being variably positioned inR3 by constraining the camera to always look
at the world origin. Because we allow an object to rotate around its vertical axis, we only need to
specify the camera zenith angle,#. Thus we set the horizontalx-coordinate of the camera in the
world to zero and allow# to be the only variable extrinsic parameter. In other words,the position
of the camera is constrained to a circular arc on they; z-plane (Figure 2). We model the amount of
perspective in the image from the camera by parameterizing its focal length,f . Our camera instance
parameters are thusc = ( #; f; s ), where# 2 [¡ ¼=2; ¼=2], andf; s > 0. The camera instance
parameters in (3) are modeled as Gaussian with category parameters¹ s ; § s .

2.3 Image model

We represent an image as a collection of detected feature sets that are statistically generated by an
instance of our object and camera. Each image feature sets asarising from a corresponding feature
generator that depends on projected object information. For this work we generate edge points from
projected object contours and image foreground from colored surface points (Figure 3).
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Figure 3: Example of the generative im-
age model for detected features. The
left side of the �gure gives a rendering
of the object and camera models �t to
the image on the right side. The right-
ward arrows show the process of statis-
tical generation of image features. The
leftward arrows are feature detection in
the image data.

We assume that feature responses are conditionally independent given the model and that theG
different types of features are also independent. Denotingthe detected feature sets in thedth image
by xd = xd1; : : : ; xdG , we expand the image component of equation (3) to

p(n m ) (xd j cd; smd ; t m ) =
GY

g=1

N xY

i =1

f (n m )
µg (xdgi ) : (5)

The functionf (n m )
µg (¢) measures the likelihood of a feature generator producing the response of a

detector at each pixel using our object and camera models. Effective construction and implementa-
tion of the edge and surface point generators is intricate, and thus we only brie�y summarize them.
Please refer to our technical report [21] for more details.

Edge point generator. We model edge point location and orientation as generated from projected
3D contours of our object model. Since the feature generatorlikelihood in (5) is computed over all
detection responses in an image, we de�ne the edge generatorlikelihood as

N xY

i =1

f µ(x i ) =
N xY

i =1

eµ(x i )
Ei ¢e0

µ(x i )
(1 ¡E i ) ; (6)

where the probability density functioneµ(¢) gives the likelihood of detected edge point at thei th

pixel, ande0
µ(¢) is the density for pixel locations not containing an edge point. The indicatorEi is 1

if the pixel is an edge point and0 otherwise. This can be approximated by [21]
N xY

i =1

f µ(x i ) ¼

(
N xY

i =1

eeµ(x i )
Ei

)

eN bg
bg eN miss

miss ; (7)

whereeN bg
bg andeN miss

miss are the probabilities of background and missing detectionsandNbg andNmiss
are the number of background and missing detections. The density eeµ approximateseµ by estimating
the most likely correspondence between observed edge points and model edges.

To compute the edge point densityeµ, we assume correspondence and use thei th edge point gen-
erated from thej th model point as a Gaussian distributed displacementdij in the direction perpen-
dicular of the projected model contour. We further de�ne thegradient direction of the generated
edge point to have Gaussian error in its angle differenceÁij with the perpendicular direction of the
projected contour. Ifmj is a the model point assumed to generatex i , then

eµ(x i ) = ce N (dij ; 0; ¾d) N (Áij ; 0; ¾Á) (8)

where the perpendicular distance betweenx i andmj and angular difference between edge point
gradientgi and model contour perpendicularv j are de�ned dij = k x i ¡ mj k and Áij =
cos¡ 1

¡
gT

i v j =kgi k kv j k
¢
. The range ofdij is ¸ 0, and the angleÁij is in [0; 1].

Surface point generator. Surface points are the projected points of viewable surfaces in our ob-
ject model. Image foreground pixels are found usingk-means clustering on pixel intensities. Setting
k = 2 works well as our training images were selected to have minimal clutter. Surface point detec-
tions intersecting with model surface projection leads to four easily identi�able cases: foreground,
background, missing, and noise. Similar to the edge point generator, the surface point generator
likelihood expands to

N xY

i =1

f µ(x i ) = sN fg
fg sN bg

bg sN noise
noise sN miss

miss ; (9)

5



3 Learning
To learn a category model, we sample the posterior,p

¡
£ (n ) j X

¢
/ p

¡
X ; £ (n )

¢
, to �nd good pa-

rameters shared by images of multiple object examples from the category. Given enough iterations,
a good sampler converges to the target distribution and an optimal value can be readily discovered
in the process. However, our posterior distribution is highly convoluted with many sharp, narrow
ridges for close �ts to the edge points and foreground. In ourdomain, as in many similar problems,
standard sampling techniques tend to get trapped in these local extrema for long periods of time.
Our strategy for inference is to combine a mixture of sampling techniques with different strengths
in exploring the posterior distribution while still maintaining convergence conditions.

Our sampling space is over all category and instance parameters for a set of input images. We denote
the space over an instance of the camera and object models with n parts asC £ S(n ) . Let T(n ) be
the space over all topologies andR(n )

c £ R(n )
s over all category statistics. The complete sampling

space withm subcategories andD instances is then de�ned as

­ =
[

n 2 Nm

CD £ S(n )D £ T(n ) £ R(n )
c £ R(n )

s ; (10)

Our goal is to sample the posterior with£ (n ) 2 ­ such that we �nd the set of parameters that
maximizes it. Since the number of parameters in the samplingspace is a unknown, some proposals
must change the model dimension. In particular, thesejump moves(following the terminology of Tu
and Zhu [27]) arise from changes in topology.Diffusion movesmake changes to parameters within
a given topology. We cycle between the two kinds of moves.

Diffusion moves for sampling within topology. We found that a multivariate Gaussian with small
covariance values on the diagonal to be a good proposal distribution for the instance parameters.
Proposals for block size changes are done in one of two ways: scaling or shifting attached blocks.
We found that both are useful good exploration of the object structure parameter space. Category
parameters were sampled by making proposals from the Gamma priors.

Using standard Metropolis-Hastings (MH) [1, 14], the proposed moves are accepted with probability

®
³

~µ(n )
´

= min

(

1;
p( ~µ(n ) j X ) q(µ(n ) j ~µ(n ) )

p(µ(n ) j X ) q( ~µ(n ) j µ(n ) )

)

: (11)

The MH diffusion moves exhibit a random walk behavior and cantake extended periods of time
with many rejections to converge and properly mix well in regions of high probability in the target
distribution. Hence we occasionally follow a hybrid Markovchain based on stochastic dynamics,
where our joint density is used in a potential energy function. We use the common leapfrog dis-
cretization [18] to follow the dynamics and sample from phase space. The necessary derivative
calculations are approximated using numerical differentiation (details in [21]).

Jump moves for topology changes.For jump moves, we use the trans-dimensional sampling ap-
proach outlined by Green [7]. For example, in the case of a block birth in the model, we modify the
standard MH acceptance probability to

®
³

~µ(n +1)
´

= min

(

1;
p( ~µ(n +1) j X )

p(µ(n ) j X ) q(~b; ~t )

r d

r b

¯
¯
¯
¯
¯

@( ~µ(n +1) )

@(µ(n ) ; ~b; ~t )

¯
¯
¯
¯
¯

)

: (12)

The jump proposal distribution generates a new block and attachment edge in the topology that are
directly used in the proposed object model. Hence, the change of variable factor in the Jacobian
reduces to 1. The probability of selecting a birth move versus a death move is given by the ratio of
r d=rb, which we have also de�ned to be 1. The complimentary block death move is similar with the
inverse ratio of posterior and proposal distributions. We additionally de�ne split and merge moves.
These are essential moves in our case because the sampler often generates blocks with strong partial
�ts and proposing splitting it is often accepted.

4 Results
We evaluated our model and its inference with image sets of furniture categories, including tables,
chairs, sofas, footstools, and desks. We have 30 images in each category containing a single arbitrary
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(a) (b)

Actual
Predicted Table Chair Footstool Sofa Desk

Table 10 5 4 0 2
Chair 5 9 10 5 3
Footstool 0 0 1 3 1
Sofa 0 1 0 7 3
Desk 0 0 0 0 6

Figure 4: Generated samples of tables (a) and chairs (b) fromthe learned structure topology and sta-
tistical category parameters. The table shows the confusion matrix for object category recognition.

view of the object instance. The images we selected for our data set have the furniture object
prominently in the foreground. This enables focusing on evaluating how well we learn 3D structure
models of objects.

Inference of the object and camera instances was done on detected edge and surface points in the
images. We applied a Canny-based detector for the edges in each image, using the same parameter-
ization each time. Thus, the images contain some edge pointsconsidered noise or that are missing
from obvious contours. To extract the foreground, we applied a dynamic-threshold discovered in
each image with ak-means algorithm. Since the furniture objects in the imagesprimarily occupy
the image foreground, the detection is quite effective.

We learned the object structure for each category over a 15-image subset of our data for training
purposes. We initialized each run of the sampler with a random draw of the category and instance
parameters. This is accomplished by �rst sampling the priorfor the object position, rotation and
camera view; initially there are no structural elements in the model. We then sample the likelihoods
for the instance parameters. The reversible-jump moves in the sampler iteratively propose adding
and removing object constructs to the model. The mixture of moves in the sampler was 1-to-1 for
jump and diffusion and very infrequently performing a stochastic dynamics chain. Figure 6 shows
examples of learned furniture categories and their instances to images after 100K iterations. We
visualize the inferred structure topology and statistics in Figure 4 with generated samples from the
learned table and chair categories. We observe that the topology of the object structure is quickly
established after roughly 10K iterations, this can be seen in Figure 5, which shows the simultaneous
inference of two table instances through roughly 10K iterations.

We tested the recognition ability of the learned models on a held out 15-image subset of our data for
each category. For each image, we draw a random sample from the category statistics and a topology
and begin the diffusion sampling process to �t it. The best overall �t according to the joint density
is declared the predicted category. The confusion matrix shown in Figure 4 shows mixed results.
Overall, recognition is substantively better than chance (20%), but we expect that much better results
are possible with our approach. We conclude from the learnedmodels and confusion matrix that the
chair topology shares much of its structure with the other categories and causes the most mistakes.
We continue to experiment with larger training data sets, clustering category structure, and longer
run times to get better structure �ts in the dif�cult training examples, each of which could help
resolve this confusion.

Figure 5: From left to right, successive random samples from2 of 15 table instances, each after 2K
iterations of model inference. The category topology and statistics are learned simultaneously from
the set of images; the form of the structure is shared across instances.

7



Figure 6: Learning the topology of furniture objects. Sets of contiguous blocks were �t across �ve
image data sets. Model �tting is done jointly for the �fteen images of each set. The �ts for the
training examples is shown by the blocks drawn in red. Detected edge points are shown in green.
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