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ABSTRACT
We present a method for automatically aligning words to
image regions that integrates specific object classifiers (e.g.,
“car” detectors) with weak models based on appearance fea-
tures. Previous strategies have largely focused on the lat-
ter, and thus have not exploited progress on object cate-
gory recognition. Hence, we augment region labeling with
object detection, which simplifies the problem by reliably
identifying a subset of the labels, and thereby reducing cor-
respondence ambiguity overall. Comprehensive testing on
the SAIAPR TC dataset shows that principled integration
of object detection improves the region labeling task.

Categories and Subject Descriptors
I.4.8 [Image processing and computer vision]: Scene
analysis—Object recognition

General Terms
Algorithms, Performance

1. INTRODUCTION
There has been much recent work on both training classi-

fiers for object recognition, as well as learning models for au-
tomated image annotation, from weakly labeled data (e.g.,
[2, 5, 7, 13, 17, 16]). Such data consists of pictures with
associated keywords, where it is not known which word cor-
responds to which part of the image (correspondence ambi-
guity). Learning from weakly labeled images is challenging,
since it requires solving two problems at once: 1) locating
the desired entity in the training data; 2) learning a model
for appearance. Recent work suggests addressing the corre-
spondence ambiguity in weakly labeled data as a separate
problem from learning object appearance [3, 11]. Specifi-
cally, the goal is to align each label, initially associated with
the whole picture, with the correct part of the image (Figure
1). We refer to this task as aligning the training data. Once
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this is done, this augmented data can be used for learning
region or object models. Further, we agree with others that
labels have to be localized in order to be useful for retrieval
and recognition [1, 3].

In this work, we contribute a new strategy for aligning the
training data. Specifically, we propose to combine object de-
tectors, designed for robustly identifying a single specific en-
tity, and existing methods for linking words to regions based
on weak models. Previous work (e.g., [3, 11]) has relied on
the latter, since it is not known in advance which models
are good for which objects or regions. For example, some
are better defined in terms of shape (e.g. “cup”), some in
terms of color or texture (“zebra”), and some might require a
part-based model (“bicycle”). However, developing a specific
model for every word is impractical and does not scale. On
the other hand, simple generic models can generalize over
a large number of different entities, but cannot achieve the
fine level of tuning required for robustly identifying a specific
entity. It then seems natural to exploit existing detectors to
reliably align some of the labels, relying on weak models for
the remaining ones.

We also argue that detectors are useful for annotation
when combined with exclusion reasoning [3], which posits
that each word associated to an image should be assigned to
at least one of its regions. Consider the example in Figure
1. If a car detector identifies the central region as “car”, the
labeling task becomes easier, as the choice for the two re-
maining regions is now restricted to “sky” and “snow”. This
also accommodates for the fact that detectors are usually
available for common objects only. In fact, less common ob-
jects can be aligned via exclusion reasoning, thus producing
data for training robust detectors for them.

The main contribution of this work is a principled strategy
for integrating object detectors and exclusion reasoning into
existing algorithms for region labeling. Specifically, we pro-
pose a probabilistic framework, as this is an effective way to
combine different sources of information in this domain [6,
12, 15]. To test our ideas, we incorporate state-of-the art
detectors [10] into a recent algorithm for region labeling [3].

Figure 1: Solving the correspondence ambiguity in
weakly labeled data. See text for details
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2. OVERVIEW OF OUR APPROACH
We start by defining a probabilistic framework for label-

ing the training data at the region level. Our input is a set
of images, each with a set of associated keywords. We de-
fine the vocabulary V as the union of all such keywords
(w1, ..., w|V |). Each image is subdivided into regions us-
ing a standard segmentation algorithm based on low level
features, such as color and texture (for this work, we used
NCuts [14]). We use the notation rj to identify a generic
image region produced by the segmenter.

Our goal is to compute a distribution p(w|rj) for each
region over the whole vocabulary. The probabilistic con-
straints

X

w∈V

p(w|rj) = 1 (1)

embody an additional manifestation of exclusion reasoning,
which states that to the extent that we believe rj is to be
labeled with a word, it should not be labeled with other
words. In fact, a word wk with high p(wk|rj) results in small
p(wu|rj) ∀u �= k. For example, if a car detector outputs
a low (high) probability p(car|rj) for region rj , this will
result in a high (low) probability p(wk|rj)∀wk �=“car”. Note
that this allows to smoothly integrate detectors, which are
binary classifiers, into our region labeling scenario, which is a
multiclass labeling problem. However, this requires mapping
the output of detectors (typically scores) into probabilities
using held out data, as discussed in Section 3.

Given p(w|rj , X) and p(w|rj , Y ) computed using different
sources of evidence X (e.g. detectors) and Y (e.g. appear-
ance), we can combine them into p(w|rj , X, Y ) by simple
multiplication or by averaging [15]. When all information
is incorporated into an output posterior distribution p(w|rj ,
All constraints), we simply label rj with the word wk maxi-
mizing this distribution. In Section 4, we will discuss a strat-
egy to integrate the calibrated output of a set D of detectors
p(wk|rj , D) with a posterior distribution p(wk|rj), which can
be computed using any other source of evidence. In order
to test this approach, we will first use a state-of-the-art al-
gorithm [3] that uses exclusion reasoning and image appear-
ance to compute a first estimate of p(wk|rj) ∀j, which we
call p(wk|rj , baseline). This in fact the baseline we want to
augment with p(wk|rj , D), producing p(wk|rj , baseline, D).

The baseline labeling algorithm. In this section, we
summarize the labeling approach by Barnard and Fan [3],
that we will extend with object detectors. Given the prob-
lem formulated above, this algorithm estimates the unknown
posterior distributions p(w|rj) using four main constraints:
1) similar regions from different images are likely to be la-
beled with the same word, if they come from images sharing
at least one keyword; 2) the label for a region should be
chosen among the keywords associated with the image con-
taining it; 3) each image label should have at least one region
associated with it (exclusion reasoning); and 4) ∀i, p(w|ri)
is a distribution over V , implying

P
(wv∈V ) p(wv|ri) = 1;

and 0 ≤ p(wv|ri) ≤ 1∀v, i. See Barnard and Fan[3] for
more detail. In what follows we will refer to the output of
this algorithm as p(w|rj , baseline). We now describe how we
calibrate object detectors output so that it can be integrated
with this distribution.

3. CALIBRATING DETECTOR OUTPUT
Existing object detectors typically attach detection scores

to specific portions of images, such as bounding boxes or
super-pixels (Figure 2, top row). Classification is then done
by comparing the score for an image region against a thresh-
old. We need to convert such scores into probabilities before
they can be used in our probabilistic framework. Specifi-
cally, we need

p(wk|rj , dk) , (2)

which is the probability of assigning word wk to image region
rj given the information provided by detector dk (trained to
recognize word wk) for that particular region.

We develop a calibration procedure to map detection scores
to probabilities based on training images where objects of in-
terest have been manually identified. This is very different
than simply scaling the score to the interval [0,1], and allows
further reasoning when combined with probabilities coming
from different sources, which the raw score alone would not.

We define skj to be the score assigned to rj by a detector
dk. Our goal is to estimate p(wk|rj , dk) = p(wk|skj). Intu-
itively, we approximate these probabilities with the number
of correct identifications at the given score (ie, the number
of correct identifications at score s), divided by the number
of times the detector output score s, at a suitable discretiza-
tion. First, we define

Km = {r1, ..., r|Km|}, Ks = {r1, ..., r|Ks|} . (3)

The former is the set of image regions in the training data
that were manually labeled with word wk, while the latter
is the set of image regions in the training data for which
the detector dk output score s. We estimate p(wk|s) as the
number of pixels for which dk output score s AND that were
also manually labeled with wk, divided by the total number
of pixels for which dk output score s

p(wk|s) =

P
ri∈Km,rj∈Ks

size(ri ∩ rj)

P
rj∈Ks

size(rj)
. (4)

Here, the operator size() measures the size of a region in
terms of pixels, and ri ∩ rj is the overlap between ri and rj .
The score is discretized using soft binning.

Given a score skj for a superpixel or bounding box rj

computed by detector dk, we are now able to compute

p(wk|rj , dk) = p(wk|skj) (5)

using the distribution calibrated with the procedure just de-
scribed. However, we are usually interested in computing
p(wk|ri) for a region ri produced by a segmentation algo-
rithm (Figure 2, middle left), which does not directly corre-
spond to detector output. Typically, given an image I, a de-
tector dk provides a set of possibly overlapping regions KI =
(r1, .., rN ) with corresponding scores SKI = (s1, ..., sN ). We
convert these scores into probabilities PKI = (p1, ..., pN ).
Last, the probability p(wk|ri, dk) for any region ri in I can
be computed either as the mean probability over the region

p(wk|ri, dk) =

P
ru∈KI

(pu ∗ size(ru ∩ ri))

size(ri)
, (6)

or as the max

p(wk|ri, dk) = max
(ru∈KI :size(ru∩ri)>0)

(pu) . (7)



Calibration at multiple scales. Several object detec-
tors achieve scale invariance by providing scores at multi-
ple scales. The procedure discussed in the previous sec-
tion can be extended to calibrate pσ(wk|sσ) at a particu-
lar scale σ, provided that the size of the manual regions in
Kσ

I used for calibration roughly match σ (sσ is the score at
scale σ). Given a detector dk operating at multiple scales
Σ = (σ1, ..., σNσ ), we estimate pσ(wk|sσ)∀σ ∈ Σ. Then, we
modify Equation 6 and 7 to

p(wk|rj , dk) = max
σ∈Σ

P
rσ

u∈Kσ
I

(pσ
u ∗ size(rσ

u ∩ rj))

size(rj)
, (8)

and

p(wk|rj , dk) = max
σ∈Σ

max
(rσ

u∈Kσ
I

:size(rσ
u∩rj)>0)

(pσ
u) . (9)

We use the max in both cases, since detectors perform classi-
fication by comparing the maximum over scale space against
a threshold.

4. INTEGRATING OBJECT DETECTORS
In this section we propose a strategy for combining the

posterior distribution p(w|rj , baseline) with the contribu-
tions of specific detectors, which we can now convert into
probabilities. Combining p(w|rj , baseline) over the whole
vocabulary, and probability p(wk|rj , dk) computed using de-
tector dk is not straightforward. While the former is a prob-
ability distribution over the vocabulary, and thus sums to
one, p(wk|rj , dk) can be interpreted as the output of a bi-
nary classifier for word wk, and does not allow to make any

Figure 2: Mapping score into probabilities. Here, a
car detector provided a score map (top right) for the
original image, visualized by setting the red channel
of each cell proportionally to the score (min score
r = 0, max score r = 255). Using our calibration
procedure, we found a mapping p(”car”|score) (mid-
dle right), that we use to convert the score map into
a probability map (bottom right), visualized by set-
ting the red channel proportionally to the probabil-
ity value (p(”car”|s)=0 implies r = 0, p(”car”|s)=1
implies r = 255). This is then used to compute prob-
abilities for the image regions of interest (bottom
left), for example the output of a segmentation al-
gorithm (middle left).

Figure 3: Benefits of incorporating a car detector in
the labeling process, see text for details

assumptions on the value p(wn|rj , dk) when n �= k. However,
we can assume that (1−p(wk|rij , dk)) is the probability that
the region is to be labeled with a word that is not wk given
the evidence provided by detector dk. This suggests that
we could weight p(wn|rj , baseline) with p(wk|rj , dk) when
n = k, and with (1 − p(wk|rij , dk)) otherwise

p(wn|rj , dk, baseline) ∝ p(wn|rj , baseline)∗
p(wk|rj , dk)δ(n,k)(1 − p(wk|rj , dk))1−δ(n,k) , (10)

where δ(n, k) = 1 if n = k, 0 if they are different. An exam-
ple is shown in Figure 3. Here, we see the labels produces
by the baseline algorithm (left), and the labels maximizing
Equation 10 (right) after adding a car detector (middle).

Suppose now we have a set D = d1, ..., d|D| instead of a
single one. We modify Equation 10 as

p(wn|rj , D, baseline) ∝ p(wn|rj , baseline)∗
Y

dk∈D

(p(wk|rj , dk)δ(n,k)(1 − p(wk|rj , dk))1−δ(n,k)) . (11)

Importantly, this formulation is generic enough to augment
any approach capable of computing a posterior distribution
p(w|r) over the vocabulary.

As described, we use a specific detector dk on a region j
only if wk is in the label for the image containing rj . How-
ever, we extend this by including words that are related to
the detector that are likely to be visually similar. Specifi-
cally, we use a detector for a given word if any of its syn-
onyms and hyponyms are in the image label set. For exam-
ple, we use the detector for word wk (eg, “car”) on both its
synonyms (”automobile”) and its hyponyms (”Station Wag-
gon”, “Compact”). We use the WordNet semantic hierarchy
[9] to get the hyponyms and synonyms.

5. RESULTS AND CONCLUSIONS
All our tests were performed on the SAIAPR TC-12 Bench-

mark [8], consisting of 20000 images, each annotated with
2 to 10 keywords. Ground truth manual segmentations and
annotations are available for each image. We use a com-
prehensive evaluation strategy [4] for comparing the labels
produced by our algorithm against ground truth annota-
tions at the region level. In this scope, we used two different
measures: 1) the frequency of correct labels predicted by
an algorithm (“frequency”), and 2) the number of words an
algorithm can reliably identify (“range”) [4].

We tested our full approach on seven state-of-the-art de-
tectors [10], listed in Table 2, for which we had enough im-
ages for both calibration and testing. First, each detector
was calibrated on 80 positive and 40 negative images. We
then tested on seven splits of 200 images, where each image
was labeled with at least one of the seven words we have a
detector for. Each image was segmented using NCuts [14].



Table 1: Region word alignment performance
Algorithm Range Frequency

Empirical distribution 0.14 2.75
Baseline 1.08 4.60

Detectors (avg) 1.24 5.59
Detectors (max) 1.28 6.04

Theoretical maximum 4.41 19.96

Table 2: Results where each detector is relevant
Object Range Freq Object Range Freq
Bicycle +58.8% +36.3% Car +22.4% +46.3%
Bird +3.0% +0.1% Chair +17.8% +39.5%
Boat +8.4% +33.7% Person +18.9% +19.9%
Bottle +10.2% +44.9%

The results in Table 1 show that adding detectors im-
proves performance of the baseline, both in terms of range
and frequency. We tested two different ways of computing
p(wk|rj , dk) (Equation 8 and 9), and we found slightly bet-
ter results when using the maximum over a region. A few
qualitative results are shown in Figure 4.

Table 2 shows results restricted to images where a given
detector was used, for each detector, using Equation 9 to
combine results. Here we tabulate the improvement over the
baseline, which is generally substantive. This validates that
when we have an appropriate detector, using it generally
improves alignment.

Conclusions. We developed a general approach to in-
tegrate object specific detectors with region labeling based
on weak models for appearance. We advocate two contribu-
tions: 1) A generic formulation for converting the output of
detectors into probabilities; 2) a way to integrate these prob-
abilities, coming from binary classifiers for specific words,
with posterior distributions over the whole vocabulary.

We plan to extend our strategy to incorporate additional
sources of information. One example is where labels have
associated adjectives such “red” or “white”, which can pro-
vide prior probabilities on the label, and could be exploited
similarly to the way we use detectors. A second source of
information that we would like to exploit is prior knowledge
from spatial context.
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Figure 4: Adding detectors (right) improves the
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