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Abstract

We propose a top down approach for understanding in-
door scenes such as bedrooms and living rooms. These envi-
ronments typically have the Manhattan world property that
many surfaces are parallel to three principle ones. Fur-
ther, the 3D geometry of the room and objects within it can
largely be approximated by non overlapping simple struc-
tures such as single blocks (e.g. the room boundary), thin
blocks (e.g. picture frames), and objects that are well mod-
eled by single blocks (e.g. simple beds). We separately
model the 3D geometry, the imaging process (camera pa-
rameters), and edge likelihood, to provide a generative sta-
tistical model for image data.

We fit this model using data driven MCMC sampling. We
combine reversible jump Metropolis Hastings samples for
discrete changes in the model such as the number of blocks,
and stochastic dynamics to estimate continuous parameter
values in a particular parameter space that includes block
positions, block sizes, and camera parameters.

We tested our approach on two datasets using room box
pixel orientation. Despite using only bounding box geom-
etry and, in particular, not training on appearance, our
method achieves results approaching those of others. We
also introduce a new evaluation method for this domain
based on ground truth camera parameters, which we found
to be more sensitive to the task of understanding scene ge-
ometry.

1. Introduction
We propose a top down approach for understanding in-

door scenes such as bedrooms and living rooms. Recent
interest in this domain has led to approaches for determin-
ing the orientation of the main surfaces [6, 7, 18, 27, 29], the
room box in the presence of clutter [12], and generic objects
within using learned appearance models and geometry [13].
A key motivation is to understand the 3D geometry of rooms
to help identify objects and their locations. We have essen-

tially the same goal, but we advocate even a more top-down
approach and a more unified representation. For example,
we agree with Hedau et al. [12] that clutter in rooms makes
finding the room box difficult. However, instead of think-
ing of the clutter as confounds, we would like to directly fit
objects to it. Doing so simultaneously achieves understand-
ing the inside more fully, and allows these two processes to
help each other.

In this paper, we propose a simple generative statistical
framework for modeling rooms and simple objects within
them, and a comprehensive inference approach to under-
stand room scenes based on that model. These environ-
ments typically have the Manhattan world property [5] that
many surfaces are parallel to three principle ones. Fur-
ther, the 3D geometry of the room and objects within it
can largely be approximated by non overlapping simple
structures such as single blocks (e.g. the room boundary),
thin blocks (e.g. picture frames), objects that are well mod-
eled by single blocks (e.g. simple beds). We impose fur-
ther structure by introducing the notion of a room block
type. The statistics of where blocks are located within room
blocks is conditioned on the room block. For example,
frames are constrained to lie on room surfaces, and objects
are constrained to lie on the floor and are more likely to
also be positioned against a wall. Objects can be modeled
as simple blocks, either as a good approximation of them, or
as a bounding box for a more detailed model. Our approach
easily extends to objects modeled as collections of contigu-
ous blocks as suggested by Schlecht and Barnard [23]. In
this case the block locations are conditioned on the object
position, and the statistics of the component block sizes and
configuration are conditioned on the model of the category.
We develop the room model in detail in §2.

Manhattan room images come from Manhattan rooms
with a camera constrained to be within the room. A model
hypothesis then explains the edges in the images based on
the projection of the model using the hypothesized camera.
Objects within the room are considered opaque, so that they
can explain missing edge elements from the edges they oc-
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clude. We develop the likelihood function in detail in §2.2.
To fit our model to room images we use MCMC sam-

pling. Sampling qualitatively different structures typically
leads to a change in model dimensionality (e.g. adding
a block). For such “jump” proposals we use reversible
jump Metropolis Hastings [3, 8] which defaults to standard
Metropolis Hastings [3, 19] if the dimensionality does not
change. To make these proposals more efficient we rely on
data driven methods [32]. In particular, we integrate the
method of Shi and Lui [24] to suggest 3D corners from de-
tected 2D ones. To search efficiently over regions of con-
tinuous parameters space, we use stochastic dynamics [21].
Examples of such “diffusion” proposals include changing
the camera parameters and adjusting the size of a block.
Details of our sampling approach are in §3.

Other related work. In addition to the room under-
standing papers already mentioned above, this work also
relates more broadly to recent interest in understanding and
exploiting geometry in scenes (e.g. [14, 15, 22]). Using
sampling to understand scenes as a collection of primi-
tives relates to work on image parsing [10, 25]. In Han
and Zhu [10] the prevalence of Manhattan scene surfaces
was modeled by planar rectangles under possible perspec-
tive distortion. Our model can be interpreted as a gram-
mar model for a 3D scene that is projected with a camera
model that relates to recent interest in representing images
using grammars (e.g. [30, 31], although these alternative ap-
proaches focus on image features directly, not 3D world or
object characteristics as we do here. Finally, this work also
relates to much earlier work on fitting 3D models of objects
to images (e.g. [16, 20]).

Reproducibility. The two image datasets were col-
lected by others and are available on-line [12, 28], as is
our ground truth for the UCB data set developed for this
work [2]. We have also provided an executable program
and input scripts that reproduce our results [1].

2. A generative model for room images
We denote the model parameters by θ = (r, c), where r

is the set of room parameters and c the set of camera param-
eters. We model the room as a box (right parallelepiped) rb
(representing walls, ceiling and floor) containing n objects

r = (rb, n, o1, ..., on) , (1)

where n is not known a priori. We constrain the floor to be
parallel to the x-z plane of the world reference frame, and
allow the room box to rotate around its vertical axis. This
leads to the following parametrization

rb = (xr, yb, zb, wb, hb, lb, γ) , (2)

where xb, yb, zb are the coordinates of the room centre in
3D space, wb, hb, lb are respectively its width, height and

length, and γ is the rotation angle around the room vertical
axis. Objects in the room are similarly modeled by blocks

oi = (xi, yi, zi, wi, hi, li) . (3)

For example, a single block lying on the floor could ap-
proximate a simple bed or a cabinet, or provide a bound-
ing box for a more complex object, such as a table. Win-
dows, doors and pictures are approximated with thin blocks
(frames) attached to a wall. All these entities share the same
orientation γ of the room block, under the Manhattan world
assumption [5] that most planes are aligned with the three
main world axes. Finally, objects have to be fully contained
in the room, and they can not intersect each other.

2.1. The camera model

We use a standard perspective camera model defined in
terms of extrinsic and intrinsic parameters. Since it is not
possible to reconstruct the absolute position and size of a
scene from a single image, we arbitrarily keep the camera at
the world origin, and we infer the scene up to a scale factor.
Intuitively, we keep the camera at a fixed location and let the
room translate, expand and rotate around its vertical axis
(Figure 1, first column). It is then not necessary to have
a parameter for the height of the camera from the floor, as
this is determined by the distance between the camera centre
(fixed) and the room floor, which can move in space.

The orientation of the camera coordinate system is de-
fined in terms of rotation angles around the camera z axis
(roll angle ψ) and x axis (pitch angle φ), as shown in Fig-
ure 1, second and third column. The yaw is not relevant as
it is fully determined by the rotation angle γ of the room.
The amount of perspective distortion is determined by the
focal length f . Finally, we assume that there is no skew,
that the aspect ratio is unity, and that the principal point is
in the centre of the image. The camera model, c, is then
fully specified by the parameters

c = (ψ, φ, f) . (4)

The focal length has to be positive, and we constrain pitch
and roll to fall within ranges of plausible values for indoor
scenes ( φ ∈ [−60◦, 60◦]), ψ ∈ [−10◦, 10◦] ). Notice that
the camera points in the direction defined by the positive z
axis when φ = 0.

2.2. The image model

Our image model is similar to the one used by Schlecht
and Barnard [23], where a 3D model hypothesis is projected
into the image plane using the camera hypothesis, and the
projected model generates image features F = (f1, ..., fs).
Here we limit our features to the set of edge points E = f1.
To compute the projection of the model into the image plane
we take advantage of graphics hardware and software us-
ing offscreen rendering. We attach detected image edge
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Figure 1. The camera extrinsic parameters define the position
and orientation of the camera with respect to the world reference
frame. When reconstructing from single images, absolute sizes
and position cannot be determined, and we can choose to arbi-
trarily position the camera at the origin of the world coordinate
system. As illustrated in the left column, the room box (in red)
can move and also rotate around its y-axis which determines the
yaw of the camera (see text). Two more angles, a rotation around
its z-axis (roll, mid column) and a rotation about the x-axis (pitch,
right column) complete the camera orientation specification.

points to projected model edge points using greedy assign-
ment based on both edge distance and edge angle (see (6)).
Notationally, E = {Ej , Enoise}, where j indexes projected
model edges.

Given this correspondence we assume that edge points
are conditionally independent given the model. Following
Schlecht and Barnard [23], this leads to the likelihood func-
tion

p(E|θ) ≈ eNnoise
noise e

Nmiss
miss

∏
j

∏
k

e(xjk) , (5)

where θ is defined above, emiss is the probability of a pro-
jected point of the scene model not being matched to a de-
tected edge in the scene, and enoise is the probability den-
sity of a detected edge point not being matched to any model
point. Nnoise and Nmiss are respectively the number of un-
matched detected edge points and the number of unmatched
projected model points.

The probability density of matching a detected edge
point xk to model edge Ej is given by

e(xjk) = N (djk, 0, σd)N (φjk, 0, σφ) , (6)

where djk is the distance between xk and the projected
model point mj . This distance is computed along the di-
rection of the gradient at mj while setting up the corre-
spondence. φjk is the difference in orientation between the
detected edge and the corresponding projected model edge.
In this work we use σd = 20 pixels and σφ = 0.5 radi-
ans. The likelihood is maximized when most of model edge

points are matched to a detected edge point (small Nmiss),
few detected edge points are unmatched (small Nnoise) and
each model edge k is well aligned with the corresponding
detected edge j (i.e. φkj ≈ 0, dkj ≈ 0).

3. Inference
To find good parameters for the observed image, we sam-

ple from the posterior distribution

p(θ|E) ∝ p(E|θ)p(θ) , (7)

where p(E|θ) is the likelihood function defined in equation
(5), and p(θ) is the prior over the model parameters.

Our sampling space is defined over all camera and scene
parameters. Sampling moves are selected at random and fall
into two categories: “jump” moves (§3.2), which change
the discrete structure of the model by adding and removing
blocks from the scene, and “diffusion” moves” (§3.1) that
allow efficient sampling within the parameter space for a
particular structure.

3.1. Diffusion sampling using stochastic dynamics

Diffusion moves are used for continuous changes in a
parameter space. We sample over phase space by following
Hamiltonian dynamics using Neal’s formulation [21]. Our
energy function H(θ) is defined in terms of the joint dis-
tribution of the parameters and the image features p(θ, F ):

H(θ) = −log(p(F |θ)− log(p(θ)) . (8)
We follow the dynamics with leapfrog discretization, and
compute the derivative of the potential energy with numeri-
cal approximation, which is the computational bottleneck.

We use the following diffusion moves, which follow the
dynamics over a subset of parameters, and are executed in a
random order:
• Sample over room box parameters. This move trans-

lates, expands and rotates the room box around its y
axis. Objects in the room are attached to the floor or to
the walls and thus follow the room as it moves
• Sample over the size and position in the room of an

object. This slides and/or expands an object on the
wall or floor it is attached to.
• Stretch an object or room box. In this alternative way

to change object size, we sample over one dimension
of the object by keeping the position of one of its faces
fixed. This solves a sampling problem illustrated in
Figure 2.
• Sample over camera parameters except focal length.

We often sample these parameters together with the
room box parameters.
• Sample over focal length and scene scale. Chang-

ing the focal length alone causes objects to shrink or
expand in the image plane. This causes a dramatic
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Figure 2. From an upper right image corner (in blue) we proposed
a door (in green) with a random height and width (left image). To
get the correct fit, the door must be stretched and its center (in red)
must be moved down (right image). In order to do this efficiently,
we introduce diffusion moves that vary the dimension of an object
by keeping the position of one edge fixed. In this example, when
this move is chosen for the top edge, the sampler finds the right
solution very rapidly. Best viewed in color.

change in the likelihood for the proposal, and the move
is rarely accepted. Hence, we change the focal length
while keeping the ratio between the scene scale and the
focal length constant.

While executing any of these moves, we enforce that every
object is completely inside the room, objects do not inter-
sect, and that the camera is contained inside the room box
at all times. When we detect that a move would cause an
object to be partly outside the room, either we shrink the
object or allow the room to expand.

3.2. Reversible jump sampling for jump moves

We need jump moves to change the number of objects
in the room, which is not known a priori. In particular,
jump moves can add, remove, or replace objects and frames,
or propose a different room box to start fresh. For such
moves we use the reversible jump modification to the stan-
dard Metropolis Hastings acceptance formula [8, 9]. Since
the sampling space is so large, naive jump proposals (e.g.
samples from the prior) are unlikely to be accepted, lead-
ing to unacceptably long running times. Hence we use data
driven sampling [26] that conditions the sampling on the
data, and allows fast bottom-up processing to ensure that
samples have some evidence in the data.

To support data driven sampling, we detect the vanish-
ing points (§3.3) which provide a good estimate of the focal
length, and also allows us to assign line segments to one
of the three main orthogonal directions defining the Man-
hattan world (Figure 3, top right). We then detect corners
on the image plane by finding the intersections of line seg-
ments converging to different vanishing points (Figure 3,
top right). Such corners are likely to be generated by the
projection of an orthogonal corner in the 3D world. Given
the position and orientation of one such corner on the image
plane and a reasonable estimate of the focal length, we are
able to propose blocks in 3D which are accepted with high

Figure 3. We use detected image corners to propose blocks that
will be accepted with a high probability. We detect a triplet of or-
thogonal vanishing points from the original image (top left), and
use them to assign detected line segments to one of the three main
orthogonal directions defining the Manhattan world (top right).
Each line is draw with a different color according to the vanishing
point it converges to, with black lines being outliers. Intersections
of three line segments each converging to a different vanishing
point are generated by 3D orthogonal corners (i.e. a block corner
or a room box corner) projected onto the image plane (bottom left).
We can use one of such corners to propose the position and orien-
tation of a block in 3D [24]. This is illustrated in the bottom right
image, where we used a corner (in blue) to propose a block with
random size, whose projection onto the image plane is rendered in
red. Best viewed in color.

probability (§3.4). The same strategy is also used to propose
the position and the orientation of the room box (Figure 3,
bottom right).

3.3. Vanishing points and corner detection

We detect edge points using a Canny edge detector [4],
link them into edge chains, and fit line segments to them.
Then, we detect vanishing points using the algorithm pro-
posed by Lee et al [18]. Here, we do not refine the position
of the vanishing points using non linear optimization as they
do, since the diffusion sampling naturally does a similar
thing, but relative to our likelihood function. We compute
an estimate of the focal length using the Choleski decompo-
sition of the absolute conic matrix, which can be easily re-
trieved from the position of the three vanishing points [11].

Given the vanishing points, line segments in the scene
can be assigned to one of the three main orthogonal direc-
tions (Figure 3, top right). The intersection of three lines,
such that each of them converges to a different vanishing
point, are likely to be the projection of a 3D corner onto the
image plane (Figure 3, bottom left).
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3.4. Proposing a 3D orthogonal corner from a 2D
corner and the focal length

We use the method of Shi and Liu [24] to propose the
camera parameters and a 3D orthogonal corner given the
2D projection of the corner onto the image plane and the
focal length. Consider the case where we want to propose
the room box from a corner (e.g. the blue corner shown in
Figure 3, bottom right). In this case, we can position the
camera at the world origin, aligned with the world axes.
By fixing the focal length, which we have estimated from
the vanishing points, we can cast a ray between the camera
centre and the 2D corner position in the image plane, and
we can cast three similar rays from the camera centre and a
point lying on each of the 2D directions of the corner. By
fixing the distance between the camera and the 3D corner,
which we can choose arbitrarily, these four rays and the fo-
cal length fully determine the coordinates of the corner in
3D and its orientations [24]. We can then hypothesize the
position and orientation of a corner of the room box. Fi-
nally, we randomly select the room box size, ensuring that
the camera is contained within it. The red lines in Figure 3,
bottom right, are the projection of the room box proposed
from the corner shown in blue on the image.

We use simple geometric operations to transform this
box to a coordinate system such that the floor lies on the
XZ plane and the camera is at the world origin, as required
by our model. The same procedure can be used to propose
blocks inside the room. In this case, we make sure that
the object is contained inside the room box, expanding the
latter if necessary. Notice that the procedure above can be
applied also to corners found by intersecting only two lines
converging to different vanishing point, by augmenting the
corner with a line converging to the third vanishing point.

3.5. Delayed acceptance

In order to further increase the acceptance probability
for a jump move, we use delayed acceptance. More specifi-
cally, once we propose a block, it is likely to have the wrong
size, since we randomly choose its dimensions. To over-
come this impediment, we allow diffusion sampling shrink
or stretch the object for some time, such that its projection
moves towards image edges, thus increasing the likelihood
value for this proposal. Only then do we decide whether to
accept or reject. This is particularly useful when propos-
ing to replace a block already providing a good fit with a
different one. Notice that this expedient is acceptable be-
cause we are using sampling only for optimization and not
integration.

4. Experiments
We performed most of our experiments on the UC Berke-

ley room dataset, which consists of 340 images of bed-

Figure 4. The correct room box (in red) was rendered on the top
left image using the ground truth camera parameters. Consider
now the parameters used to render the room box on the top right
image. When comparing against the room box ground truth labels
(see text), this hypothesis would get a very high score, since only
the green regions shown in the bottom image would be labeled as
error. However, the camera parameters are wrong, as shown by the
red edges delimiting the room ceiling on the top right image. Best
viewed in color.

rooms, kitchens, living rooms corridors, etc., under a wide
variety of camera parameters. We evaluate our ability to fit
the room model by comparing against:

• Ground truth box layout. For each image we manually
labeled each pixel according to the room face it be-
longs to (i.e. 1= ceiling, 2= floor, 3 = right wall,etc.).
We compare the projection of the room box estimated
by our algorithm against these manual labels, measur-
ing the percentage of pixels that were classified cor-
rectly. This is a standard measure that has been used in
previous work in this domain [12, 27]
• Ground truth camera parameters, prepared using the

procedure discussed in Section 4.1. Estimating correct
camera parameters is an important indicator of scene
understanding, but it is not commonly tested against.
Note that a good result on the room box pixel orienta-
tion can be achieved when the camera parameters are
very different from the correct ones (see Figure 4)

4.1. Ground truth camera parameters

We determine the ground truth camera parameters for an
image using a semi-automated procedure. First, we manu-
ally draw the room box onto the image plane, as illustrated
in Figure 5. We then use the diffusion moves described in
Section 3.1 to fit a camera and a room box to the edges man-
ually drawn on the image. We obtain the exact solution in
nearly all images by running the diffusion moves for a few
minutes. We manually checked each result, and in a few
cases we had to adjust the camera parameters further.

This procedure is equivalent to calibrating a camera
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Figure 5. Determining ground truth camera parameters from an
image. We manually draw the room box edges (in green) onto
the image plane (top), producing the image shown in the bottom
left. We fit a room box and a camera to this image by running the
sampling diffusion moves (Section 3.1) for a few minutes. This
procedure finds the exact solution, which is rendered in black on
the bottom right image. We can see that the projection of the model
correctly matches the image edges. We use the camera parameters
found in this way as ground truth. Best viewed in color.

given a set of correspondences between 3D lines and the
corresponding projected lines onto the image plane. Nor-
mally, six of such correspondences are needed, provided
that the directions of the 3D lines are all linearly indepen-
dent. Since we know that the edges onto the image plane all
come from the projection of a right-angled parallelepiped,
and given our assumptions on the camera parameters, we
only need 4 of such lines to determine the focal length.
It follows that this approach cannot work when only three
edges of the room box are visible. Hence, we do not eval-
uate on camera parameters in these cases (just room box
labels).

The procedure just described also allows to estimate the
ground truth pitch and roll of the camera, in a coordinate
system where the room floor is parallel to the XZ plane and
the camera centre is at the world origin, as required by our
model. However, we cannot compare against the room size
and position estimated, since reconstruction from single im-
ages is possible only up to a scale factor.

4.2. Results

We started with a very simple experiment where we pro-
posed a room box and camera parameters from every de-
tected image corner. We further evaluated the proposals
with the highest likelihood value by running the diffusion
moves for a few thousand iterations. The diffusion sam-
pling allows to fix the size and position of the room and the
camera parameter. The whole process takes around 10 sec-
onds per image on a machine with a fast graphics card (no
noticeable improvement was detected when running the al-
gorithm for a longer time). As a second experiment, we ran

Figure 6. Examples of the estimated room model backprojected
onto the original image under the estimated camera parameters.
The room box is rendered in red, objects in blue, and frames in
green. Best viewed in color.

the full algorithm by allowing a maximum of three objects
per room, with a running time of ten minutes on the same
machine as before.

We first evaluated against the ground truth room box la-
bels and camera parameters on the UC Berkeley dataset
(340 images). We show qualitative results in Figure 6,
where we have good fits of the room box, and in Figure 7,
where we successfully detected several objects and frames.

The quantitative results in Table 1 show that adding
blocks results in a substantial improvement in the focal
length estimation. Proposing blocks adds more edges to the
scene, and this provides more evidence to what the correct
foreshortening is, since all blocks share the same orienta-
tion. An example is shown in the top row of Figure 8.

Adding blocks also reduces the error on the room box
layout estimation (Figure 8, bottom row). This is even more
evident on the Hedau dataset [12], shown in Table 2. (We
only test on pixel orientation, as we do not have camera pa-
rameters for this data). Our results approach that of Hedau
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Figure 7. Additional results . In the left column we rendered only
the room box (in red) without the detected objects, in the right
column we can see some promising detected blocks (blue) and
frames (green). Best viewed in color.

Experiment box error f length pitch roll
No objects 24.8% 93± 7 3.8± 0.2 4.3± 0.7
3 objects 24.0% 75± 6 3.8± 0.2 4.0± 0.8

Table 1. Error for room box layout and camera parameters estima-
tion on the UC Berkeley dataset. The focal length error is in pixel
units, pitch and roll are in degrees

No blocks 3 blocks
Box error 30.2% 26.8%

Table 2. Error for room box layout estimation on the Hedau dataset

et al. [12] and Wang et al. [27], who respectively report er-
rors of 21.5% and 20.1% on this dataset. To compare prop-
erly, the results in Table 2 are for the 105 images used for
testing in those works, despite the fact that our method does
not use training data. In contrast, these alternative meth-
ods use sophisticated models for clutter appearance that is
trained on the rest of the data (200 images).

5. Conclusions

We have developed a generative modeling framework for
understanding Manhattan rooms and an efficient method for
simultaneously fitting the camera and the room model of un-
known structure and dimension to image data. The method
achieves comparable results to others without any use of

Figure 8. Adding blocks in the room produces a better reconstruc-
tion. Here we show the room box found by fitting the room box
alone (left), the room box found when adding objects (middle),
and the full reconstruction (right). In the top row, adding blocks
drives the sampler towards better camera paramaters. In the bot-
tom row, the blue block helps explaining occlusions and forces the
room box to expand, even if the blue block does not provide a good
fit for an object in the room. Best viewed in color.

Figure 9. Limitations of our algorithm. Top left: when the error
in the estimates of the vanishing points is large, blocks proposals
are completely wrong and our algorithm often provides the wrong
solution. Top right: when we do not add objects to the scene, room
box edges that are completely occluded cannot be explained by
our model. Bottom left: our likelihood function is edge based, and
objects that explain image edges very well might not correspond
to actual pieces of furniture in the room. Bottom right: we only
use a weak prior on object size and position. As a consequence,
we sometimes propose blocks with unlikely size. Best viewed in
color.

appearance models learned from data on the task of identi-
fying surface labels.

We have also tested our method against ground truth
camera parameters which confirm our suspicion that surface
label performance is a relatively insensitive measure. By
identifying some objects, we are able to improve the cam-
era parameter measure without significant difference in sur-
face labels. While detection of frames and objects remains
difficult, the camera parameter improvement, together with
visual inspection, suggest an improvement in scene under-
standing. We have put our ground truth on-line [2], and we
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are keen to see what others can learn from it.
We emphasize that the key contribution is the alterna-

tive top-down Bayesian approach, which is likely to prove
more powerful as it integrates more information and more
sophisticated object models, which can be simultaneously
identified while helping explain occluded features of other-
wise correct room components. This approach is also able
to relatively easily integrate information about color, tex-
ture, lighting, and priors about 3D object spatial context.
For example, recent work by Lee et al. [17] suggests that in-
corporating detected surface orientations in the reconstruc-
tion process would be beneficial. These directions are the
topic of ongoing research.
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