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Robust Spatio-temporal Matching of Electronic

Slides to Presentation Videos
Quanfu Fan, Kobus Barnard, Arnon Amir, and Alon Efrat

Abstract—We describe a robust and efficient method for auto-
matically matching and time-aligning electronic slides to videos of
corresponding presentations. Matching electronic slides to videos
provides new methods for indexing, searching, and browsing
videos in distance learning applications. However, robust auto-
matic matching is challenging due to varied frame composition,
slide distortion, camera movement, low-quality video capture,
and arbitrary slides sequence. Our fully-automatic approach
combines image-based matching of slide to video frames with a
temporal model for slide changes and camera events. To address
these challenges we begin by extracting scale invariant feature
transformation (SIFT) keypoints from both slides and video
frames, and matching them subject to a consistent projective
transformation (homography) by using random sample consensus
(RANSAC). We use the initial set of matches to construct a
background model and a binary classifier for separating video
frames showing slides from those without. We then introduce
a new matching scheme for exploiting less distinctive SIFT
keypoints that enables us to tackle more difficult images. Finally
we improve upon the matching based on visual information
by using estimated matching probabilities as part of a hidden
Markov model (HMM) that integrates temporal information and
detected camera operations. Detailed quantitative experiments
characterize each part of our approach and demonstrate an
average accuracy of over 95% in 13 presentation videos.

Index Terms—Matching slides to video frames, Video indexing
and browsing, Distance learning, SIFT keypoints, Homography
constraint.

I. INTRODUCTION

We describe a robust and efficient method for automatically

aligning electronic slides to videos of corresponding presen-

tations. For each video frame we identify the corresponding

electronic slide (temporal alignment) and determine the geo-

metric transformation between them (spatial alignment). This

matching enables novel approaches to searching, browsing,

and viewing on-line presentations in the context of distance

learning and corporate training. Presentation slides provide

semantic handles for segmenting, linking and manipulating the

instructional content. Text in slides can be reliably extracted

from the presentation file and used to index the video. Slide

changes provide semantically meaningful segmentation of

the video. Further, slide images can be back-projected into

the video to improve its quality or implement compression.

Enabling these benefits by automated robust matching of slides

to video is the main contribution of this work.

An example application is shown in Figure 1 where we use

the method developed in this paper to synchronize the video
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Fig. 1. Two ways of browsing videos [1]: a) by keyframes and b) by slides.
Notice the difference at the bottom thumbnails slider. Slide changes provide
a semantic video segmentation and are therefore more desirable for video
browsing than keyframes extracted by shot boundary detection.

with the original slides shown side by side. Further, instead of

using thumbnails corresponding to shot boundaries for video

browsing (1a), we use thumbnails of slide images (1b). The

later choice makes navigation to the topics of interest faster

and more convenient. While such browsing is already provided

in various systems (e.g., [2], [3], [4], [5]), none of these

systems have an automated way to time-align and link slides

to video content. Instead they use various hardware-based

solutions, specially instrumented lecturer’s computers, and/or

manual annotation methods to align video with slides.

A key difficulty for automating the alignment is the varied

appearance of slides in the video. Lecture video may be

captured by amateurs or experts, and may use one or more pan-

tilt-zoom (PTZ) cameras targeting the presenter, the screen,

or the audience at different times. Hence we consider three

kinds of video frames depending on whether the projection

screen is shown in the frame and how large it is (Figure 2). A

full-screen frame typically shows only the presentation screen,

but we include all frames where more than 50% of the image
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(a) Full-screen frame (b) Zoom-in, full-screen frame

(c) small-screen frame (d) Full-screen frames with dramatic color change and small
zoom-in

(e) Animated slide, full-screen frame (f) No-screen frame (presenter, audience)

Fig. 2. Sample video frames captured in presentations. Pairs (a), (b), (d) and (e) are full-screen frames, (c) is a small-screen frame, and (f) shows two no-screen

frames. Each pair (a-e) shows a slide image (left) and a corresponding video frame (right). In (b), the red box marks the slide region captured by the video frame.

contains slide content. In small-screen frames, the screen is

present, but occupies at most 50% of the image area. These

are usually wide field of view shots of the presenter along with

the projection screen. Finally, in some shots, when the camera

pans to the presenter or audience, the screen is left outside of

the camera field of view, resulting in no-screen frames with

no slide content. A robust system must handle all types of

frames.

The situation becomes even more challenging when the

slides are washed out by strong ambient illumination, occluded

by the presenter, or distorted in color due to incorrect camera

white balance. These complications make robust matching

difficult, especially when we need to distinguish between

nearly identical slides which are common in presentations.

Previous work on using image features has not produced

robust results for the unconstrained matching task described

above. One reason is that slide localization (done first) and

recognition have been addressed separately. However, captur-

ing systems using PTZ cameras often produce frames where

part of the screen is left out, making naive slide localization

difficult. Further, slide identification ambiguities that are dif-

ficult to resolve using image information can potentially be

addressed using temporal information, but these two have not

been integrated.

Our approach first matches video frames to slides using

image features and then improves on those matches using

temporal modeling of slide changes and camera operations.

The image based matching process consists of three phases. In

the first phase, a global keypoint matching process is applied

to a set of keyframes. This yields some successful matches

for “easier” keyframes. In the second phase, these matches

are exploited to automatically build a classifier for pruning

no-screen frames, and to build a background model for

matching more difficult small-screen frames where the screen

is less than half of the frame area. In phase 3, the slide-

to-frame transformations found in the previous phases are

used to efficiently and accurately match the remaining frames

using a new matching scheme we call local keypoint matching.

Finally, the resulting matches, expressed as probabilities, are

used in a hidden Markov model (HMM) that integrates the

spatial matching with a temporal model of slide transition

probabilities and camera operation probabilities. This im-

proves the system by disambiguating matches to similar slides.

Key contributions. To the best of our knowledge, this

work is the first to: 1) simultaneously identify and register

slides in unconstrained video; 2) automatically acquire a

scene background model using identified slides in small-screen

frames and apply that model to improve identification of more

difficult slides; 3) improve matching speed and accuracy using

efficient local homography search that exploits multiple homo-

graphies computed from other frames; 4) further improve slide

to frame matching with temporal information that accounts

for slide changes, camera operations, and camera switches.

The measured accuracy (over 95%) under a wide range of

conditions goes substantively beyond what has been previously

reported, and opens up a number of possibilities for improving

access to instructional content.
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II. RELATED WORK

The great potential of e-learning has inspired considerable

research in providing effective tools to structure and navigate

instructional content [6], [7], [8], [9], [10], [11], [12], [13],

[14], [15], [16]. The specific task of synchronizing slides with

video was first addressed by manually editing time stamps

(e.g., the BMRC Lecture Browser [3]). Subsequently, the

Classroom 2000 Project [17] introduced hardware to record

time stamps during the presentation. Their ClassPad provided

easy browsing and annotation of slides in the classroom for

both teachers and students. Today, several commercial e-

learning systems can deliver synchronized multimedia presen-

tations over the Internet where slides are displayed side by side

with the video (e.g., the Mediasite system [4] and Microsoft

Producer [18]). However, current content authoring systems

do not provide automatic off-line slide-to-video matching.

Rather, synchronization is achieved either by recording time

stamps at slide changes on the computer [2], or by manually

inserting time stamps (e.g., [5]). Another approach is directly

recording the video signal from the video projector (e.g., [19]).

Slide change is detected based on the difference between two

subsequent frames, and a new slide is stored only when the

difference exceeds a pre-specified threshold.

All these approaches require dedicated hardware and/or

software systems that are engaged in advance of the presenta-

tion. This is a major limitation when the goal is to provide

access to the vast stores of on-line video from disparate

sources on a variety of generic platforms. To address this

limitation, a few automatic slide-to-video matching methods

have been proposed. Most of them can be regarded as a

two-step matching process: slide extraction followed by slide

identification. Mukhopadhyay et al. [20] developed a system

for structuring multimedia content in which slides and audio

information are automatically synchronized with video. The

system uses a fixed camera where the projective transformation

is predetermined by the four corner points of the projector

during the system installation. Syeda-Mahmood [21] proposed

a method to locate slides in videos using an illumination-

invariant descriptor built upon the background color of slides.

The method is capable of detecting slides appearing anywhere

in the frames. The spatial layout geometry of the detected

slide regions is successively used to recognize slides. Liu et

al. [22] developed an algorithm to identify slides in videos by

matching those of all possible slide pairs. The method detects

the quadrilaterals in the frames to extract the slide regions.

Erol et al. [23] proposed a method to link slide images taken

by camera during presentations to the source files that generate

the slides. In their method, an image is first classified as one

of four different types, and depending on the image type, the

slide is identified by applying one or several combinations

of methods, including edge histogram matching, line profile

matching, string matching and layout matching. Behera et

al. [24] developed a method to spot slide change events based

on analyzing the visual stability of a sequence of frames.

However, no further slide recognition done.

Other approaches for slides to video alignment include the

use of Optical Character Recognition (OCR) to extract text

from video frames and match it with slides text [25], and

aligning words from speech, extracted using speech recogni-

tion, to slide text [26]. Neither of these methods can handle

slides without text, or distinguish between slides containing the

same text but different graphics. Both are sensitive to errors

made by their respective recognition engines. However, they

suggest promising additional source of information that could

be integrated into the system proposed here.

III. SPATIO-TEMPORAL MATCHING OF SLIDES TO

PRESENTATION VIDEOS — SYSTEM OVERVIEW

Our method for matching slide images to frames sampled

from a presentation video integrates spatial matching [27]

and temporal modeling [28] (see Figure 3). Spatial matching

links frames to slides based on visual features. To achieve

robustness, speed, and accuracy, we use a three phase algo-

rithm (Alg. 1) that progressively improves the matching based

on what is learned in previous phases. We apply the first two

phases to a small, sparse set of video frames (“keyframes”)

and leverage what is learned to efficiently match (in phase 3)

the much larger target set of input frames (“sampled frames”)

which are sampled from the video at a fixed rate — we use one

frame per second in this work. To construct the keyframe set

we use the CueVideo shot boundary detection algorithm [29]

to divide the video into segments, and, whenever needed,

divide these further so that each shot is at most a minute long.

We use the middle frames of the shots as keyframes.

In phase 1 we apply global keypoint matching (§IV-F) to

quickly find matches for only keyframes that are easily

matched to slides. These matches provide the information

necessary for phase 2, which has three steps, each again is

involving only keyframes.

The first step of phase 2 uses the matched small-screen

keyframes to build an unsupervised scene background model

(step 2.1). As shown later, slide regions in small-screen frames

can be detected and spatially aligned via background matching.

Next we use the matched keyframes to train a binary classifier

to separate frames with slide content from no-screen frames

without any slide content. We apply the classifier to the

unmatched keyframes and prune the no-screen keyframes (step

2.2). We then try to match the keyframes newly classified

as having slide content in a second run of RANSAC with

more iterations. Further, for slides where background matching

Fig. 3. Flowchart of the spatio-temporal slides to video matching process.
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provides the slide area within the frame, we ignore keypoints

outside the slide area while matching (step 2.3).

Finally, in phase 3, we process the dense set of sampled

frames, using the classifier to prune out the no-screen frames

and applying the new local keypoint matching algorithm to the

rest. This method leverages the slide-frame transformations

available from the previous phases to restrict the spatial scope

of the matching thereby increasing scalability and enabling us

to exploit less distinctive keypoints to improve accuracy.

The whole pipeline is efficient. Phase 1 and phase 2

only involve keyframes which are small in number. Phase 3,

although applied to the much larger set of sampled frames,

benefits from a fast local matching that leverages information

learned from the previous phases.

Temporal modeling (§V). The spatial matching process

provides frame-slide match hypothesis and associated prob-

abilities. The probabilities for all frames are combined into

a hidden Markov model (HMM) that distinguishes camera

changes from slide changes and incorporates slides sequencing

and jumping probabilities, set from data. This helps disam-

biguate weak matches and matches to similar slides by using

the knowledge that slides are usually presented in order. The

temporal model also integrates the detected camera operation

information (§V-B), exploiting the observation that certain

camera operations, such as switching between cameras, or

zooming in, rarely occur simultaneously with a slide change.

Hence, a slide presented before a cut (an abrupt camera

change) is expected to remain displayed when the camera

changes. On the other hand, the camera is very likely to remain

fixed during slide changes. Notice that a camera change is

artistic, triggered by the video producer, while a slide change is

semantic, triggered by the presenter. In the video, both appear

as abrupt change of frame content. To achieve robust matching

it is important to distinguish between these two changes.

IV. SPATIAL MATCHING OF FRAMES TO SLIDES

Previous algorithms for matching video frames to slides

have attempted to first locate the slide region in the frame,

and then match it to a slide. However, reliably locating slides

in frames is difficult, especially under difficult conditions or

when slide boundaries are not visible which is common when

PTZ cameras are used. We propose an alternative approach that

simultaneously identifies the slide and solves for the geometric

Algorithm 1 Spatial Matching of Frames to Slides

Require: A set of slides and the video of the corresponding presentation

Initialize: Extract keyframes using shot boundary detection and create a set of frames

sampled at a desired fix rate.

Phase 1: Match keyframes to slides using RANSAC with global NN search.

Phase 2 (step 2.1): Create a scene background model and use it to determine slide

regions in small-screen frames.

Phase 2 (step 2.2): Create an SVM classifier for no-screen frames, and use it to prune

no-screen frames from the keyframes.

Phase 2 (step 2.3): Run RANSAC again with a larger number of iterations on the

remaining unmatched keyframes. For small-screen frames where the slide region within

the frame is found by background matching, keypoints outside the slide are ignored

in the matching.

Phase 3. Match all sampled frames identified as having slide content with the same

SVM classifier using RANSAC with local NN search.

return the corresponding slides matched to any of the input frames.

mapping from the slide to the video frame. Here we use

random sample consensus (RANSAC) to link scale invariant

feature transform (SIFT) keypoints under the constraint of a

consistent mapping, as has been done in a number of computer

vision applications (e.g., [30], [31], [32], [33]).

A. SIFT Keypoints

SIFT keypoints [34] are points of local gray-level maxima

and minima that are detected from a set of difference-of-

Gaussian images in scale space. Points with low contrast and

strong single-direction edge response are eliminated to in-

crease stability and distinctiveness. Each keypoint is associated

with a scale, an orientation, and a descriptor (128-element

vector) that represents the statistics of local gradients in a patch

centered at that keypoint. SIFT keypoints are scale and rotation

invariant, and partially robust to change in illumination and

camera viewpoint. These properties make them particularly

suitable for handling camera movement in the slide matching

task. In this work, we generated keypoints from images off-

line by using a publicly available SIFT keypoint detector [35].

Figure 4 shows the SIFT keypoints detected in a slide (4a)

and a corresponding frame (4b). As seen in the figure, heavily

textured regions produce substantially more keypoints than

color-homogeneous regions. Fortunately for our application,

text on slides generally yields many distinctive keypoints.

B. Keypoint Matching

The feature similarity between two keypoints can be mea-

sured by the Euclidean distance of the keypoint descriptor

vectors described above. The match (or correspondence) of

a keypoint in one image is defined as the nearest neighbor of

all the keypoints from another image. To accept a point match

as valid, one could check that the distance is less than a pre-

specified global threshold. However, it is generally difficult

to find a good threshold as some features are much more

distinctive than others. Instead, we use the following approach

suggested by Lowe [34] to discard false matches based on the

two nearest neighbors

Let P1 and P2 be two keypoints from images 1 and 2
respectively, where P1 is the nearest neighbor of P2 in the

feature space. Then, P1 is considered a match to P2 only if

d(fP1
, fP2

)

d(f
P

′

1

, fP2
)
≤ τ (1)

where d(., .) denotes the Euclidean distance between two

descriptor vectors and fP is the descriptor vector of a keypoint

P . P ′
1 is the second nearest keypoint of P2 in image 1.

This ratio of the distances to the nearest and second nearest

neighbors is more reliable than an absolute threshold since a

false match is more likely to have a number of other matches

within close distances in the feature space. As studied by

Lowe [34], an appropriate choice of the threshold τ rejects

the majority of false keypoint matches while still retaining

most of the correct matches. Figure 4c shows an example of

the keypoint matches achieved by this ratio measure. Since

this scheme matches keypoints by searching nearest neighbors
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(a) Slide SIFT keypoints (b) Frame SIFT keypoints

(c) Putative matching (d) Correct matching

Fig. 4. Keypoint matching. The top two images show keypoints detected
in a slide image (a) and a frame image (b). Each circle indicates the location
(center) and scale (radius) of a keypoint feature detected. An arrow is attached
to each circle to show the associated orientation. The bottom left image (c)
shows matches proposed based on nearest neighbors alone. The bottom right
image (d) shows correct matches that share a homography from slide to frame.

(NNs) throughout an entire image, we call it global NN search

to distinguish it from the local NN search we propose in §IV-I.

Keypoint matching using nearest neighbor search in a high

dimensional feature space may be time consuming. When the

dimension is higher than 10−20, spatial data structures such as

kD-trees do not perform any better than linear search (depend-

ing on the number of points [36]). Therefore, other applica-

tions [30], [37] use approximate algorithms such as BBF [38]

and LHS [39], combined with dimensionality-reduction tech-

niques. However, in our three-phase matching algorithm, linear

search performance is sufficient for the limited number of

keyframes used in global keypoint matching (§IV-F). Further,

we greatly reduce the overall matching cost through a new

matching scheme, local keypoint matching (§IV-I), that is used

for the majority of frame-slide matching.

C. Estimating the Homography Between Two Images

A 2D homography is an invertible projective transformation

that maps points from one plane to another plan. The points

in a slide image are mapped to the corresponding points on a

projector screen by a homography, and the later are mapped

to their projection in a video frame by another homography.

Hence we can use the transitivity property of homographies to

define a homography that maps points directly from the slide

to the video frame. When the camera moves, the homography

changes. Yet the mapping of corresponding projected slide

points from one video frame to another video frame is, by

transitivity, also a homography. Moreover, as long as the

camera only zooms and rotates around its focal point without

translation, non-planar scene background points from one

frame to another are also connected via a homography. Hence

homographies model many of the relations between slides,

their projections on screen and the screen and scene projection

into video frames. The more general case of matching non-

planar background sections under general camera motion is

less relevant to our application.

We represent image points using homogeneous coordinates.

Given two homogeneous points x = [u, v, w]T and x′ =
[u′, v′, w′]T linked by a homography H, the mapping between

x and x′ is

x′ = Hx, (2)

where H is a 3×3 matrix. We use the normalized direct linear

transformation (DLT) [40] to compute H from a set of four

hypothesized keypoint matches.

D. Fitting Constrained Homography using RANSAC

Some initial matches from the nearest neighbors search

are false matches (outliers) due to the ambiguity of SIFT

features. However, the correct matches (inliers) should agree

on the homography model that links the slide image and its

corresponding frame in the video. To remove outliers we use

RANdom SAmple Consensus (RANSAC) [41]. RANSAC re-

peatedly chooses a random selection of the minimum number

of data points required to fit the model. The fitted model is

then evaluated based on the number of other data points that

agree on the hypothesis within a specified error (or the fitting

error evaluated over a required number of inliers). After a

pre-specified number of iterations, the algorithm returns the

hypothesis that generates the maximum number of supporting

data points (or minimum fitting error) as the best model.

We consider a match between keypoints (x,x′) to be an

outlier if the symmetric transfer error e ≥ ǫ where

e =
√

d(x,H−1x′)2 + d(x′,Hx)2 , (3)

and d(·, ·) is the Euclidean distance between two homogeneous

points projected to image coordinates. We empirically set

ǫ = 3
√
2, which is reached, for example, if the transformed

distances in both directions are 3 pixels.

E. Pruning Unlikely Homography Candidates

Slides captured by a PTZ camera may be scaled, rotated

and even distorted, but in a typical slide capturing situation

where the intention is that the lectures will be viewed “as is,”

these transformations are not expected to be too extreme. If

they were, the video would likely be considered unacceptable.

We exploit this observation to prune proposed homographies

that are unlikely to be correct. This improves performance and

helps reduce false positive matches to frames where there are

no slides (e.g., only audience or presenter). Of course, blindly

using this heuristic in situations where there might be unusual

camera placements could lead to worse performance.

To test if a proposed homography, H, should be pruned, we

first approximate it by the affine transformation

A =





h11

h33

h12

h33

h13

h33
h21

h33

h22

h33

h23

h33

0 0 1



 . (4)
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By dropping the third row and column in A, we obtain a 2×2
matrix A2×2, which we further decompose as

A2×2 = RSU =

[

cosθ −sinθ
sinθ cosθ

] [

sx 0
0 sy

] [

1 u
0 1

]

. (5)

Here R is a rotation matrix, S is a scaling matrix, and U is a

shearing matrix. We constrain A so that:

• |θ| ≤ 20◦

•
1

10
≤ sx ≤ 10 ; 1

10
≤ sy ≤ 10 ; 2

3
≤ sx

sy
≤ 3

2

• |u| ≤ 0.2

In other words, the slide projection is a transformation with

rotation no larger than 20◦ and scaling between 1 and 10, and

shearing no larger than 0.2. During the iterative process of

RANSAC, for any proposed H, if the corresponding A fails

any of the above conditions, then H is discarded.

F. Global Keypoint Matching

The global keypoint matching phase may receive frames of

any type, with or without a slide. Hence slide matching is

globally applied in the entire frame area. To match a frame

to slides, we start with the slide that has the greatest number

of initial keypoint matches to the frame (based on (1)), and

use RANSAC to prune the matches based on the homography

constraint. Let k be the number of matches that remain. By

observation, k ≥ 6 can almost guarantee a correct slide

transformation if it is constrained as described in §IV-D. We

consider a match valid if k ≥ K, where we set K to 10 in

our experiments for a high level of confidence. If the match

is not valid, we move on to the slide that has the second most

number of initial keypoint matches to the frame (and so on).

If no valid match can be found, the frame is left unmatched

for now. Here we only need enough matches to support the

classifier training and background modeling of phase 2.

G. Exploiting the Background By Homography Consistency

Homography Consistency. Let fi be a frame linked to

slide, s, by homography Hs
i . Also, let fj be an unmatched

frame of s from the first phase (see Figure 5). The trans-

formation Hf
i,j between fi and fj is a homography, which

can be found using SIFT keypoint matching. Further, denote

the proposed homography between s and fj by Hs
j . A slide

keypoint xk is mapped to a keypoint yik on fi and a keypoint

yjk on fj . Accordingly, yik should correspond to yjk in the

matching of fi and fj . Thus

yik = Hs
ixk , yjk = Hs

jxk , and yjk = Hf
i,jyik . (6)

Since xk is arbitrary, we can merging these equations to yield

the algebraic relationship between Hs
i , Hs

j and Hf
i,j as

Hs
j = Hf

i,jHs
i . (7)

We refer to this simple property as homography consistency.

It provides an indirect way to compute the slide homography

for a frame. Instead of matching it to a slide directly, one

can match it to another frame of the same slide whose slide

homography is already identified.

Fig. 5. A slide s and two views
(frames) fi and fj of it. The slide
homographies mapping s to fi and fj
are Hs

i and Hs
j , respectively. The ho-

mography mapping fi to fj is H
f
i,j .

As shown in the text, Hs
i , Hs

j and

H
f
i,j , are related by Hs

j = H
f
i,jH

s
i .

Background Matching. Small-screen frames are captured

by a wide-view camera and usually share substantial back-

ground such as the podium, audience and projector (see

Figure 2c). Since scene background usually yields plenty of

keypoints,the transformation between two small-screen frames

can be robustly established by background matching. In such

cases, even if the two frames do not show the same slide,

homography consistency still holds under the assumption that

the camera only rotates about its optical center.

One reason that small-screen frames are hard to match is

that there are many outliers from the background in the initial

matching. With the slide homographies identified with back-

ground matching, we first locate the slide area and eliminate

the disturbance from background, and thus gain a better chance

to find a correct match with RANSAC. More importantly, the

identified homographies are used for local keypoint matching

(see §IV-I) that enable more powerful methods for disam-

biguating small-screen frames. If the assumption that the

camera only rotates around its optical center does not hold

strictly, the homography Hj would only approximate the

transformation, but generally it will still be accurate enough

for the subsequent local keypoint matching.

Background matching requires at least one identified

small-screen frame in the global keypoint matching phase. The

background model is nominally the keypoints found in the

collection of background regions in the identified small-screen

frames. In the case where multiple small-screen frames are

available, an alternative is to reconstruct a panoramic view

of the background scene of the classroom by stitching the

frames together using a method proposed by Brown [30]

that is available through the AutostichTM software [42],

and extracting the keypoints from the mosaic. This has the

advantage that we only store one keypoint for each element of

the background instead of potentially several noisy duplicates

from multiple frames. Further, because the keypoints are

determined from multiple overlapping frames, they are po-

tentially more accurate. We experimented with this alternative

background model in the case of one of our test videos that had

many small-screen frames (CONV1). Figure 6 illustrates the

background matching process using that video as an example.

H. Detecting no-screen Frames

Detecting no-screen frames is not trivial because of the

large visual variations in different types of frames. We separate

frames without slides from others using what we learned from

the first phase. The underlying assumption is that slide images

from a given presentation will be far away in an appropriate
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Fig. 6. Background matching. small-screen frames usually share static objects
in the background scene such as the flag and podium indicated here. This
provides a way to detect small-screen frames by matching background between
frames, as illustrated here. The middle image is a reconstructed background
scene by stitching multiple identified small-screen frames.

feature space from no-screen frames such as those of the

presenter and audience.

For image classification features we use the color coherence

vector (CCV), a color histogram that incorporates spatial

information [43]. The CCV of an image, I , is a vector of

pairs (αi, βi), which stores the number of coherent versus in-

coherent pixels with each discretized color. The CCV distance

between two images I and I ′ [43] is defined as

dG(I, I
′) =

n
∑

i=1

|αi − α′
i|+ |βi − β′

i| , (8)

where n is the number of discretized colors.

We use the slides identified in the first phase as positive

training samples. Negative samples are selected among the

frames that have large CCV distance from the positive sam-

ples. More specifically, the training data set is constructed

as follows. Let F l and Fs be the set of full-screen and

small-screen frames detected in the first phase respectively.

We set the positive samples D+ = S ∪ F l ∪ Fs where S is

the set of original slides. F l augments S to compensate for

color changes of slides in the video. The negative samples

D− are the k farthest no-screen frames away from D+ in the

feature space. Formally, the distance of a frame fi to D+ is

dD+(fi) = min
Ij∈D+

dG(fi, Ij) . (9)

We set k by k = min(U, |D+|) where U is the number of

keyframes remaining unmatched. We then use libSVM [44]

to train a linear support vector machine (SVM) and classify

frames unmatched in the first phase as either a frame with

a slide or as a no-screen frame which can be excluded from

further processing.

I. Local Keypoint Matching

Low resolution capture often leads to very few distinc-

tive keypoints, especially in small or blurry slides. Here

global keypoint matching (§IV-B) is likely to fail as most

keypoints would be rejected in the initial matching due to the

second NN criterion (Equation 1). Increasing the threshold τ
does not help much as the majority of the newly found matches

would be outliers.

To address this issue, we propose a new method to match

up less distinctive keypoints locally in the frames using

estimates of the homographies. The key observation is that a

homography estimate dramatically constrains where we expect

the match to be, and hence we only need to consider the few

candidates that are near the expected position. This both speeds

up the matching and increases the chance of finding matches

for frames captured in challenging conditions (see §VI-C).

The effectiveness of the method relies on combining infor-

mation over multiple video frames. For example, background

matching over sequential frames allows us to provide homog-

raphy estimates for small-screen frames that we have yet to

match reliably. Further, homography consistency makes use

of frame-to-frame matching which can sometimes be done

reliably even when slide matching is not robust. Details for

the two key parts of local keypoint matching follow.
1) Computing Initial Slide Homographies: Let

{f1, f2, . . . , fn} be a sequence of sampled frames from

a video shot and let fk be the keyframe with known slide

homography, Hs
k. We then apply keypoint matching to match

every pair of consecutive frames in the sequence to obtain a

set of homographies {Hf
1,2,H

f
2,3, . . . ,H

f
n−1,n} where Hf

i,i+1

is the homography between fi and fi+1. These homographies

can be found relatively quickly because frames within shots

are visually similar.

The homography Hf
i,j between any two frames fi and fj ,

as illustrated in Figure 7, can be expressed as a product of a

series of homographies by

Hf
i,j =

{

Hf
i,i+1H

f
i+1,i+2 . . .H

f
j−1,j i < j

(Hf
j,j+1H

f
j+1,j+2 . . .H

f
i−1,i)

−1 i > j
,

(10)

where the length of the series is |i − j|. Using homography

consistency, the homography Hs
i mapping the slide to frame

fi now can be easily computed from the known Hs
k of the

keyframe by Hs
i = Hf

i,jHs
k. While such a product will

accumulate errors, this is not a problem, because we only need

an initial approximation. Finally, in the case that a slide change

occurs in the video shot, the homography series likely breaks

due to no matching available at the slide change point. Here

we set the missing homography to the identity matrix I as the

camera tends to be fixed during slide changes.

f
2

f
n−1

f
k f

n
f
1

H
1,2

f H
2,3

f
H

k,k+1

f
H

n−1,n

f

H
1
s H

2
H

k
H

n−1
H

n

si

s s s s

Fig. 7. Inferring slide homographies. In a sequence of frames sharing the same
slide, the slide homography of any frame can be inferred from one known slide
homography in the sequence.
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2) Local Nearest Neighbor Search: For a keypoint P in fi,
let PH be the projection of P in sj according to H. The local

NN of P is a keypoint in sj that is located around PH within

an image distance threshold r that satisfies (1), and is closest to

P in feature space. To retrieve the local NN of P , we perform

a range query centered at PH in the 2D image space, and

then search the NN of P in the feature space from the query

results. Since the 2D range query is fast and returns only a few

candidates to be evaluated using the 128-dimensional feature

space, local NN search is significantly faster than global NN

search. In addition, the geometric constraint from H rejects

many outliers and yields a better initial matching, which in

turn helps RANSAC achieve a solution that otherwise cannot

be obtained by global keypoint matching. We set the radius

of the 2D range query empirically, finding that any radius of

20 − 40 pixels works well on our data. We used 40 for all

experiments.

V. TEMPORAL MODELING OF SLIDE CHANGE IN

PRESENTATION VIDEOS

The three-phase spatial matching approach has demon-

strated high accuracy (over 90%) on our data. However,

extremely similar slides are difficult to disambiguate using

visual features alone. In addition, low-quality or small-screen

frames can have multiple weak slide matches, or even no

match, also making them difficult to identify using only

appearance information. We improve the matching accuracy

in these challenging situations using the temporal order of

slides and cues from camera operations.

Slides generally advance sequentially according to their or-

der in the presentation file, although the sequence is sometimes

interrupted by shifting to the previous slide or jumping to

an arbitrary slide. This notion of slide change can be well

captured by a Hidden Markov Model (HMM) [45].

Camera operations also yield useful cues on slide change.

For example, there usually is no slide change when the camera

is zooming. Similarly, it is more likely that the camera will

remain fixed when there is a slide change. In §V-B, we

incorporate these hints on slide change from camera operations

into the HMM to help further resolve ambiguity.

A. Modeling Slide Events By HMMs

We model slide change by a HMM where the states

are the slide numbers. The matching problem then can be

mathematically expressed as follows. Given a frame sequence

F = {f1, f2, . . . , fn} and a set of temporally ordered slide

images S0 = {s1, s2, . . . , sm}, find an optimal slide sequence

Ŝ that maximizes the following conditional probability

p(S|F ,M) = π(s1)
n
∏

i=2

A(si|si−1)B(fj|si) , (11)

where M = (π,A,B) is the model, with A being the slide

transition probability, B being the probability of observing

a frame given some slide, and π being the prior that is

considered uniform in our case. We use the well-known Viterbi

algorithm [46] to solve (11) to find an optimal slide sequence

for the frame sequence.

Data Tk<−1 T−1 T0 T1 Tk>1 TNS/SN TNN

CONF1 N/A 0.03% 48.50% 1.17% 0.11% 1.63% 48.54%

CONF2 N/A 0.06% 45.26% 1.00% .01% 1.06% 52.53%

UNIV N/A 0.10% 50.31% 1.74% N/A 1.59% 46.24%

TABLE I
FREQUENCIES OF THE VARIOUS SLIDE-CHANGE EVENTS IN OUR

DATA. BECAUSE WE DENSELY SAMPLE THE VIDEO AT ONE FRAME

PER SECOND, THE TWO MOST COMMON ”EVENTS” ARE IN FACT

HAVING NO CHANGE: STAYING ON THE CURRENT (T0) OR

CONTINUE WITH no-screen FRAMES (TNN). AS EXPECTED, THE

NEXT MOST FREQUENT EVENT IS ADVANCEMENT BY A SINGLE

SLIDE (T1). GOING BACKWARDS IS GENERALLY RARE.

Fig. 8. Modeling no-screen frames.
There is one “null” node between each
ordered pair of slide nodes

js
is


s(i−j)
null

s(j−i)
null

1) Slide Transition: Consider a pair of consecutive frames

fj, fj+1. We define the following slide events depending on

the slides shown in the frames. When frames fj, fj+1 show

slides si, si+m, respectively, we denote the event by Tm (an

m-slides jump). The sign of m indicates the direction of the

jump and m = 0 means that the same slide is shown in both

frames. When both frames contain no slide we write TNN,

and when only one of them contains a slide we write TNS or

TSN depending on whether the slide is seen before the frame

or after it.

We consider any slide transition Tm to be stateless, that

is, the probability of Tm only depends on m. For example,

transition from slide 2 to slide 3 has equal likelihood as

a change from slide 7 to 8. This assumption reduces the

Cartesian product of slide transitions into a linear sized set

of slide events, one for each m sized jump. Notationally, we

have A(si|sj) = p(Tm) where m = si− sj is the slide event.
We estimate the stateless slide transition probabilities from

held out data by counting the frequency of the slide events.
Because the data is limited, we enforce smoothness using three
Poisson distributions as follows:

p(Tm) =







ηP (−m,λ1) m < 0
ηP (0, λ1) + (1− η)P (0, λ2) m = 0
(1− η)P (m,λ2) m > 0

, (12)

where P (x, λ) = e−λλx

x!
is the Poisson distribution, and η

is the frequency that slide changes go backwards set using

held out data. The values of λ1 and λ2 were fit from a held-

out portion of the ground truth data using the Poissonness

plot [47].

Table I shows the distribution of slide transitions in our

data. Because of the high frame sampling rate we used for the

final pass (1 frame per second), transitions to the same state

dominate. Also, as expected, slides tend to change forward

much more frequently than backward. Thus η, λ1, and λ2 in

Eq. 12 are all small numbers.

2) Modeling Frames Without Slide: To deal with no-screen

frames we add a “null” node between each ordered pair of

slides (Figure 8). The “null” node keeps track of the slide last

shown which is necessary because when the video goes back
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to showing slide frames, the distribution over slides depends

on the last slide that was shown. Note that only a linear number

of “null” nodes needs to be maintained in the implementation

due to the stateless assumption of the slide transition.

3) Slide Observation Probability: We denote B(fj|si) as

the probability of seeing a frame fj given a slide si. Let kij be

the number of keypoint matches between fj and si after being

thresholded by K (the minimum number to be considered as

a valid slide match). We set

B(fj|si) =
wijkij

∑

ℓ wiℓkiℓ
, (13)

where wij is a weight to favor a slide with more keypoint

matches to the frame. The weight wij can be interpreted as is

the confidence level of matching from si to fj , which we set

to P (X = 1|Hij) (X is defined below), as used by Brown and

Lowe [30]. To derive P , let nk be the number of keypoints in

the slide area and ni be the number of inliers compatible with

the homography H solved by RANSAC. We define an event

whether a slide is the correct match of a frame as a random

variable X (X = {0, 1}). We assume that keypoint matches

are independent Bernoulli, and thus the number of inliers is

binomially distributed:

P (H|X = 0) = B(ni, nk, p0)
P (H|X = 1) = B(ni, nk, p1)

, (14)

where p0 is the probability of a keypoint match being an inlier

when a slide match is incorrect and p1 is the probability of a

keypoint match being an inlier when a slide match is correct.
Using Bayes’ rule and assuming P (X = 0) = P (X = 1),

P (X = 1|H) = P (H|X=1)P (X=1)
P (H)

= P (H|X=1)P (X=1)
P (H|X=1)p(X=1)+P (H|X=0)P (X=0)

= B(ni,nk,p1)
B(ni,nk,p1)+B(ni,nk,p0)

. (15)

We empirically set p0 = 0.1 and p1 = 0.6. Finally, for snull
(i.e no-screen frames), we use

B(fj|snull) =
{

1.0 if fj is a no-screen frame

0.0 otherwise
. (16)

B. Integrating Slide Events and Camera Events

The visual appearance of presentation videos is influenced

by both presenter actions (e.g., slide changes, white board use,

switching to browsing the web), and producer actions (e.g,

switching cameras, zooming, or panning). Producer actions

and presenter events are correlated, as the producer reacts

to presentation. For example, we expect that slide to frame

homographies will remain the same across slide changes and

that slides will not change during camera changes. In what

follows we show how the camera cues can be incorporated

into the HMM to help further improve matching performance.

1) Camera Events: Camera events describe how the pro-

ducer operates the cameras when capturing a presentation.

Here, we define 8 types of camera events of interest: zoom-in,

zoom-out, pan-tilt, stay-fixed, slide-cut, slide-in, slide-out, and

stay-out. The first four events are the basic camera operations.

Zoom-in magnifies the slide area significantly in the current

frame with respect to the previous frame due the producer

increases the focal length, typically with a camera zoom con-

trol. Zoom-out is defined inversely. Pan-tilt is camera panning

or tilting while keeping the slide in view. Stay-fixed refers

to continued capture of the slide area (either small-screen or

full-screen frames) without movement. The next three are more

related to the visual change of slides. Slide-cut is a special

event in multi-camera capture systems that refers to switches

between two cameras. Slide-out denotes camera movement

away from the slide to capture the presenter/audience only.

Slide-in denotes the opposite operation. Stay-out is the camera

event between slide-out and slide-in when no slide is being

captured. A camera in stay-out may zoom or move, but we do

not further differentiate between these actions as they provide

little information about slide change.

2) Detecting Camera Events: Much previous work has

considered understanding camera motion as an optical flow

problem, including detecting camera operations based on the

motion vector field (see [48] for a review). Here we take a

different approach that detects camera operations based on

changes to slide position and size in the video. These changes

directly correspond to camera operations such as zoom, pan

and tilt, and can be easily computed from the homography

between two consecutive frames.

Let {f1, f2, . . . , fn} be the set of frames in a given shot

and let Ri be the slide region in frame fi. Then Ri can

be expressed by the product of the homographies between

consecutive frames as shown in §IV-I1. Specifically,

Ri = Hf
i−1,iH

f
i−1,i−2 . . .H

f
1,2R1 , (17)

where Hf
i−1,i is the homography between fi−1 and fi. R1

is the slide region of the first sampled frame in the shot

and computed from the slide homography identified dur-

ing spatial matching. Similar to what has been done in

local keypoint matching, if Hi is not available due to slide

change in the same shot, we set Hi to be the identity matrix.

To capture slide movement, we denote the slide center of Ri

by Li, computed as the average of the 4 vertices of Ri.

We define two random variables for each pair of consecutive

frames. The first one, d, is the Euclidean distance of the

two slide centers, which indicates camera panning and tilting.

The second one, r, is the ratio of the slide areas of the two

consecutive frames related to camera zooming. We represent

each of the four events (zoom-in, zoom-out, pan-tilt and stay-

fixed) by a Gaussian distribution over X = [d, r]. Because the

distribution is over changes between consecutive frames that

are densely sampled (as opposed to the absolute final position),

the unimodal assumption is effective.

The parameters of the distributions (µi, σi) were learned

directly from a held-out portion of the ground truth data. We

distinguish among these four events by selecting the most

likely one under this model and uniform prior probability.

The other events are detected by using the frame classification

results. For example, a current small-screen frame and a

following full-screen frame indicate a slide-cut event between

two frames, while a current full-screen frame and a following

no-screen frame yield a slide-out event.
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Dataset Video
Duration Full Small No Key PPT

(min) Screen Screen Screen Frames Slides

#1 47 33 9 61 103 29

#2 55 76 3 72 151 39

#3 41 38 6 53 97 27

CONF1 #4 20 20 8 23 51 21

#5 39 41 12 64 117 34

#6 49 53 42 59 154 67

#1 68 122 3 103 228 63

#2 54 58 1 104 163 68

CONF2 #3 63 50 0 90 140 49

#4 52 40 1 61 102 33

#1 39 33 9 61 103 44

UNIV #2 48 76 3 72 151 48

#3 41 58 15 71 144 49

TABLE II
SUMMARY OF THE VIDEO DATA USED IN OUR EXPERIMENTS.

3) Modeling Slide and Camera Events By a Dynamic

HMM: The dynamic model incorporates context dependent

information from the camera events into the transition proba-

bilities of the HMM [49]. For example, camera change is as-

sociated with a higher probability that there is no slide change.

More specifically, we condition the state transition probability

p(Tm) on the camera event c: p(Tm|c). These probabilities are

estimated from the held-out portion of the ground truth data. A

trivial modification of the Viterbi algorithm, namely replacing

p(Tm) by p(Tm|c) at each time step based on c, is sufficient

to find an optimal slide sequence.

Camera events refine slide transition probabilities in tem-

poral modeling. For example, in our data, the learned p(T0|c)
(statistical counting) is perfectly 1.0 when c is a camera zoom,

pan-tilt or slide-cut. In our experiment, this refinement has

shown helpful in keeping the slide alignment in place when

there is a switch between two cameras, i.e slide-cut (Table

VII). We expect more contributions from the camera cues

on more difficult data shot by non-professional users where

significant camera movements have been observed [50].

VI. EXPERIMENTAL RESULTS

We constructed three data sets containing a total of 13
presentations (MPEG video and slide file). Six presentations

were from a corporate conference (CONF1) [29] and four

presentations were from a scientific conference (CONF2).

Both of these data sets were captured using three PTZ cameras

with live video editing, with one camera tracking the speaker,

one camera covering the projection screen and is used to

zoom in on the slides, and the third camera capturing the

audience. Three more presentations were captured from a

university seminar series (UNIV) (available online [51]) using

two cameras, one giving small-screen views and the other

capturing the audience. CONF1 is more complex than the other

two as there are many camera switches in the data, and two

videos have dramatic color change in the slides. The data is

summarized in Table II.

A. Evaluation Methods

For evaluation purposes, we manually marked each sampled

frame with ground-truth slide correspondence (1 to n if a

slide is present, 0 otherwise) and frame type (i.e., full-screen,

small-screen or no-screen). A few frames showing slides that

were missing from the presentation (such as demos) were

marked as “missing” and were excluded from the evaluation.

A frame is correctly identified if the slide number deter-

mined by the algorithm is the same as the one marked in the

ground truth. We report errors in two ways. First, we report

the frame identification error rate (FER) which is the ratio of

the number of incorrectly identified frames to the total number

of frames. Notationally,

FER =
# of incorrectly identified frames

# of total frames
. (18)

This measure is biased towards slides that appeared for a

longer time. Thus we also aggregate results based on video

segments defined as a clip without slide changes or camera

switches. The segment identification error rate (SER) is

computed by

SER =
# of incorrectly identified frames in the segment

# of total frames in the segment
.

(19)

We compute an overall performance value by averaging

SER over segments, ignoring those with less than 2 sampled

frames.

B. Preliminary Experiments

1) Setting the number of RANSAC iterations: We first es-

tablished suitable values for the number of RANSAC iterations

by plotting the error rate against the number of iterations up

to 1000 over 10 runs (plots omitted to save space). More

iterations reduce the risk of not finding a good match but

increases running time directly. For global keypoint matching

we found that beyond 200 iterations there was little decrease

in error, and we conservatively set the number of iterations

to 500 for subsequent experiments. Local keypoint matching

requires fewer iterations and reducing the number of iterations

has a bigger impact on run time. Here we found that going

beyond 100 iterations did not substantively reduce the error,

and hence we used 100 iterations for local keypoint matching

in our experiments.

2) Setting Matching Thresholds: The parameter τ deter-

mines the number of initial keypoint matches in RANSAC, and

a larger τ accepts more keypoint matches. Figure 9 plots the

slide recognition errors over τ for the three types of frames. As

indicated by the figure, the recognition accuracy of full-screen

frames is not affected much by the choice of τ when τ ≥ 0.7.

However, the recognition accuracy of small-screen frames is

quite sensitive to the value of τ , as indicated by the large errors

that occur when τ is either too small or too large. This is

mainly because the less distinctive keypoints on small-screen

frames yield too few initial keypoint correspondences for a

small τ and introduce too many outliers for a large τ . In

addition, as shown in Figure 9c, when K = 5 we get a higher

number false positives as τ increases. In summary, we found

K = 10 and τ = 0.8 to be good settings which we used for

subsequent experiments (unless otherwise specified).

3) Frame Classification Results: The frame classification

module excludes no-screen frames early in the matching

process thus saving significant computational time. It also

affects matching accuracy in two ways. First, an entire video
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(a) full-screen

 0

 20

 40

 60

 80

 100

 0.5  0.6  0.7  0.8  0.9  1R
e
c
o
g
n
it
io

n
 E

rr
o
r 

o
f 

S
m

a
ll-

s
lid

e
 F

ra
m

e
 (

%
)

Distance Ratio of NN1 and NN2

K=5
K=10

(b) small-screen
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(c) no-screen

Fig. 9. Recognition error of different types of frames in the base keypoint
matching algorithm: (a) full-screen; (b) small-screen and (c) no-screen. The
results for two matching thresholds 5 and 10 are shown. The slide recognition
performance in small-screen frames is sensitive to the value of τ , and is
degraded dramatically when τ > 0.9. A larger τ also tends to yield more
false positives when a smaller threshold is used. In addition, as shown in (c),
a small threshold cannot effectively cut off false positives as τ goes up, but a
higher threshold such as 10 we used here, can effectively suppress all the false
positives.

Data #full-screen #small-screen #no-screen Total

CONF1 1/272 3/85 2/338 6/702 (0.9%)

CONF2 7/271 0/1 7/320 14/592 (2.3%)

UNIV 0/157 4/98 1/235 5/488 (1.0%)

TABLE III
NUMBER OF INCORRECTLY CLASSIFIED FRAME TYPES.

shot would be considered as no-screen if the keyframe of

the shot was classified as no-screen. If the keyframe was

misclassified, the slide in that video shot will not be identified.

Second, correctly classified frames with matched slides have

a chance to be identified by the temporal model.

Table III gives the classification errors over the three data

sets. In general, our algorithm achieves high accuracy on

all the videos. The scene background model is demonstrated

robust in detecting small-screen frames in the videos. The

SVM classifier performs very well on CONF1 and UNIV, but

presents slightly higher false positives and false negatives on

CONF2. A closer inspection of these errors reveals that some

were due to slides containing embedded videos (in CONF2)

and browser web pages (in CONF1).

C. Spatial Matching Results

We evaluated the accuracy of matching keyframes to

slides for two algorithms. GLOB(500) is the basic global

keypoint matching algorithm with 500 RANSAC iterations.

GLOB(500)+LOC(100) is the improved three-phase match-

ing algorithm, first using 500 RANSAC iterations in the

global keypoint matching phase and then using 100 RANSAC

iterations in any consequent local matching.

Table IV gives the matching error rates of the two algo-

rithms broken down by frame type, as well as the overall frame

Data Alg
full small no Total

FER
screen screen screen misses

CONF1

GLOB(500) 11 21 0 32±2 4.5%

GLOB(500)+LOC(100) 11 12 0 23±2 3.2%

# frames 272 75 347 694

CONF2

GLOB(500) 64 0 0 64±1 11.2%

GLOB(500)+LOC(100) 52 0 0 52±2 9.2%

# frames 248 1 317 566

UNIV

GLOB(500) 4 26 1 31±1 6.4%

GLOB(500)+LOC(100) 5 16 1 22±1 4.5%

# frames 157 90 235 482

TABLE IV
THE NUMBER OF FULL-SCREEN, SMALL-SCREEN, AND

NO-SCREEN KEYFRAMES WITH MISIDENTIFIED SLIDES FOR THE

THREE DATA SETS AVERAGED OVER 10 RUNS WITH DIFFERENT

RANDOM SEEDS. ERROR ESTIMATES FOR THE NUMBER OF MISSES

ARE COMPUTED USING THE VARIATION OVER THE RUNS. FER
DENOTES FRAME IDENTIFICATION ERROR RATE.

Fig. 10. Algorithm robustness is demonstrated by repeating the experiments
using different matching threshold K, and measuring the number of misidenti-
fied small-screen frames. Local keypoint matching (LOC(100)) showed greater
robustness than the global matching algorithm, GLOB(500).

identification error rate defined in equation (18). We found

that local keypoint matching can significantly improve the

matching performance on the small-screen frames, supporting

the notion that local NN search can identify more correct

keypoint matches from non-distinctive keypoints.

The full-screen results on CONF2 are markedly worse than

those on CONF1 and CONF3. Checking these presentations,

we found that the higher errors on CONF2 can be attributed

to the many frames with little slide content.

We further tested the robustness of different algorithms

to the matching threshold K. Figure 10 demonstrates how

the number of misses goes up as K increases in the case

of small-screen frames. As shown, local keypoint matching

is almost insensitive to the choice of K, hence providing

higher matching confidence than the alternatives. Varying K
has no measurable impact on the performance of matching

full-screen frames where confidence levels are much higher,

nor on no-screen frames classification where K = 6 already

yields nearly perfect results.

Running Time. Given that Nf frames sampled from a

video are matched to Ns slides, the computational complexity

of the global keypoint matching algorithm is O(Nf Ns) as

each frame needs to be compared to all slides. Similarly,

the complexity of the three-phase matching algorithm is

O(Nk Ns+(Nf−Nn) Ns), without considering the negligible

overhead from frame classification. Here Nk is the number of

keyframes and Nn is the number of no-screen frames that
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Alg. GLOB(500)+LOC(100) GLOB(500)

CPU time (min) Global BG Local Total Total

CONF1 38.12 0.62 28.36 67.51 844.09

CONF2 48.04 0.77 31.19 80.00 720.83

UNIV 20.84 0.39 18.57 38.80 576.39

TABLE V
THE AVERAGE TIME (MINUTES) SPENT MATCHING ALL FRAMES

OF THE CONF1, CONF2 AND UNIV DATA SETS. THE THREE-PHASE

METHOD (GLOB(500)+LOC(100)) IS ABOUT 10 TIMES FASTER

THAN THE BASIC METHOD (GLOB(500)).

are dropped for consideration in the local keypoint matching.

Real world running time is also influenced by many other

factors including the number of pre-specified iterations for

RANSAC, how much texture there is in the images which

leads to more keypoints, and the quality of the images which

affect the distinctiveness of the keypoints.

Here we provide basic timing results using a Linux

machine with a 3.0GHz Pentium processor and 1GB of

memory. Table V gives the average matching time for the

three data sets, again with the algorithms GLOB(500) and

GLOB(500)+LOC(100), but now for all frames, not just

keyframes, as this is where computational cost is an issue.

Because the CPU time for matching is roughly proportional to

both video length and number of slides, we normalize running

time to that of a one-hour long video (scale by 60/L, where

L is time in minutes), and a presentation with 30 slides (scale

by 30/Ns).

Finding the SIFT keypoints of all the frames is overhead

common to both algorithms which is not counted in the

tabulated matching time results. It takes an average of 38
minutes to compute the SIFT features for the CONF1 videos

normalized to 60 minutes. Other overhead, such as computing

the CCV features and frame classification, are negligible.

The data presented in Table V shows that the three-phase

slide matching algorithm (GLOB(500)+LOC(100)) improves

upon the basic method (GLOB(500)) by an order of mag-

nitude. For the basic method, the significant matching cost

dominates the SIFT feature extraction overhead. By contrast,

the three-phase keypoint matching algorithm is reasonably

efficient, taking less than two hours to match a one-hour

video to 30 slides. Here the time needed for each of two

most expensive phases, phases 1 and 3, are both roughly

comparable to the SIFT feature extraction overhead, which

has now become one of the main bottlenecks.

D. Temporal Modeling Results

We compare the performance of three algorithms: the best

performing algorithm evaluated above based on image infor-

mation alone (GLOB(500)+LOC(100)), the standard HMM

without camera (HMM), and the camera-event-based HMM

(CHMM). The results from temporal modeling on the three

data sets are presented in Tables VI and VII. Both HMMs

substantially outperform the base matching algorithm, showing

the advantage of using temporal information. In particular,

keyframes not correctly matched or even unmatched during

the spatial matching process will have a chance to get aligned

with their corresponding slides by the HMM models. Figure

11 illustrates an example which was not identified by keypoint

matching, but resolved successfully by the temporal models.

Data Alg
full small no Total

FER
screen screen screen misses

CONF1

GLOB(500)+LOC(100) 178 173 1 352±6 2.3%

HMM 143 109 64 316±30 2.1%

CHMM 122 110 64 295±30 1.9%

# frames 6146 1540 7743 15429

CONF2

GLOB(500)+LOC(100) 1009 11 1 1021±18 7.0%

HMM 703 9 66 778±37 5.4%

CHM 703 9 66 778±37 5.4%

# frames 6674 45 7813 14532

UNIV

GLOB(500)+LOC(100) 101 142 38 281±16 3.5%

HMM 49 78 44 171±19 2.2%

CHMM 65 31 44 139±38 1.8%

# frames 3596 631 3732 7959

TABLE VI
THE NUMBER OF MISIDENTIFIED FULL-SCREEN SMALL-SCREEN,

AND NO-SCREEN FRAMES FOR THE THREE ALGORITHMS FOR

EACH OF THE THREE DATA SETS, AVERAGED OVER 10 RUNS WITH

DIFFERENT RANDOM SEEDS. ERROR ESTIMATES FOR THE

NUMBER OF MISSES ARE COMPUTED USING THE VARIATION OVER

THE RUNS. FER DENOTES FRAME IDENTIFICATION ERROR RATE.

Data Alg
full small no Total

SER
screen screen screen misses

CONF1

GLOB(500)+LOC(100) 9.3 10.8 0.0 20.1±0.7 3.3%

HMM 8.2 6.5 0.9 15.6±0.8 2.5%

CHMM 8.1 6.4 0.9 15.4±0.7 2.5%

# segments 274 84 253 611

CONF2

GLOB(500)+LOC(100) 39.3 0.0 0.1 39.4±1.1 10.4%

HMM 28.9 0.0 1.3 30.2±1.5 7.9%

CHMM 27.9 0.0 1.3 29.2±1.5 7.7%

# segments 223 1 157 381

UNIV

GLOB(500)+LOC(100) 4.1 15.8 1.1 21.0±0.9 5.6%

HMM 1.1 7.3 1.2 9.7±0.9 2.6%

CHMM 1.7 3.7 1.2 6.6±1.2 1.7%

# segments 155 83 134 372

TABLE VII
THE NUMBER OF MISIDENTIFIED FULL-SCREEN, SMALL-SCREEN,

AND NO-SCREEN SEGMENTS FOR THE THREE ALGORITHMS

AVERAGED OVER 10 RUNS WITH DIFFERENT RANDOM SEEDS.
ERROR ESTIMATES FOR THE NUMBER OF MISSES ARE COMPUTED

USING THE VARIATION OVER THE RUNS. SER DENOTES SEGMENT

IDENTIFICATION ERROR RATE.

Comparing CHMM with HMM gives some mixed results on

small-screen and full-screen frames (for no-screen they are

equivalent), but overall, CHMM performs better, exceeding the

HMM aggregated score for CONF1 and UNIV, and matching

it for CONF2.

Table VIII shows the percentage of frames that failed in

keypoint matching, but were successfully identified by the

combined spatial and temporal models. When the number of

keypoints matched are less than the cutoff required for spatial

matching, integrating both spatial and temporal information

still has a fair chance (44% when K = 10; 25% when K = 5)

of guessing the correct slide.

Finally, in Table IX we break down the results in according

to the slide events. The results show that the HMMs can model

the sequential change of slide very well. There are limited

examples of non-sequential change in our data (Table I), but

as expected, errors here are less likely to be repaired.

VII. CONCLUSIONS

Our multi-phase matching approach achieves high accuracy

on a number of videos with different styles and difficulties.

Further, our results suggest that the temporal information and

camera cues are very promising sources of information to dis-

ambiguate the occurrence and identity of slides in videos when
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Fig. 11. Two visually similar slides on the top, slide 4 and slide 36. The two
ellipses in the figure indicate the slight difference between them. The bottom
image is a captured frame of slide 4. The temporal model correctly matched the
frame to slide 36 while the keypoint matching did not, showing that temporal
information can improve the ability of the method to resolve ambiguity.

Threshold CONF1 CONF2 UNIV Avg.

K = 5 15/199 (7.5%) 126/365 (34.5%) 13/44 (29.6%) 154/608 (25.3%)

K = 10 92/314 (29.3%) 359/741 (48.5%) 35/44 (79.6%) 486/1099 (44.2%)

TABLE VIII
PERCENTAGE OF THE FRAMES THAT WERE CORRECTLY

IDENTIFIED BY THE TEMPORAL MODELS, BUT WHERE MISSED

USING VISUAL INFORMATION ALONE. K IS THE THRESHOLD USED

FOR VERIFYING CORRECT MATCHES DESCRIBED IN §IV-F.

conditions are challenging. The matching approach is suffi-

ciently robust to support large scale alignment of presentation

slides and videos. This is an important contribution because

slides are very effective “semantic handles” for presentation

videos, providing novel ways to index and browse content. In

ongoing work, we are exploiting our matching process to build

tools for making educational video more accessible [1].
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