Bayesian inference of indoor scenes using composite object models
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Indoor scene understanding from monocular images has
received much recent interest [4, 6, 8], as advancements in
recovering the 3D indoor geometry have enabled several
interesting applications, such as predicting human activi-
ties [2] and identifying objects [5] in the context of the es-
timated 3D scene. Recent methods achieved promising re-
construction results by using a simple 3D model [4, 6, &],
where both the scene layout and the objects in it are ap-
proximated with right-angled parallelepipeds (3D boxes).
Typically, a single box is used to approximate the walls,
floor and ceiling enclosing the scene (room box), and also
to model an object inside it, such as a bed or a table.

While gross geometry simplifies inference, we advocate
that more topologically specific models, such as tables with
legs and top or couches with seat and backrest, hold several
advantages over a single box representation. First, bound-
ing boxes of concave objects projected into images tend to
include much background, which is confusing evidence for
inference (Fig. 1). Second, a more realistic representation
is also more discriminative for object recognition, since dif-
ferent object types have now different geometry, as opposed
to having each object approximated with a bounding box.
Third, non-convex models enable more complex configura-
tions, such as sliding a chair under a table (Fig. 1).

Hence we are developing a comprehensive 3D Bayesian
generative model for indoor scenes, where we use 3D
composite object models created from a set of re-usable ge-
ometric primitives (parts). Our goal is to provide a compre-
hensive and realistic parsing of the indoor environment,
where individual elements are estimated in the context of
the overall 3D scene, by jointly inferring the objects, the
camera and the room box.

This work relates to that of Lee [6], where the joint infer-
ence of room box and objects in it (approximated by single
boxes) improves estimating the room box, as the objects ex-
plain occlusions. However, we advocate a more top-down
approach and unified representation, along the lines of the
work and Hoiem [3] and our previous work [7], where in-
dividual elements in the scene are estimated while also cap-
turing the interplay among them. An important step with
respect to previous work is the use of a more detailed and
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Figure 1. Motivation for using more specific geometric models.
A 2D classifier [4] finds a reasonable map for object pixels shown
in gray (top middle). However, fitting a single convex block for
the table (top right) is hampered by the confusing evidence from
the background, while a table with legs and top provides a better
fit (bottom left). Further, non-convex models allow for complex
configurations, such as a chair under a table (bottom middle). Fi-
nally, using context to propose (but not evaluate) object locations
allows us to infer a second chair that would be even more difficult
to handle using a block representation (bottom right).

realistic 3D geometric representation for objects, which al-
lows us to improve both object recognition and the global
3D reconstruction of the scene. In what follows, we provide
an overview of the proposed model, the inference strategy,
and a few quantitative results. For a more extended discus-
sion, we refer to our 2013 paper [1].

A Bayesian model for indoor scenes. We assume that
images are generated by the projection of the 3D objects
in the scene. We partition model parameters, 6, into scene
parameters, s, encoding the 3D geometry, and camera pa-
rameters ¢, modeling the perspective transformation. We
define the posterior distribution as

p(0|D) o< p(D|0)p(0) (D

where D are features detected on the image plane and p(0)
is a prior distribution, which constrains the parameter space
to realistic configurations. This includes priors on the typi-
cal height of the camera from the floor, and on the size and
position of an object given the room box — for example
beds tend to be quite short and against a wall.

For the camera parameters, ¢, we use a simplified
perspective camera model [I]. Scene parameters s =



ks

Figure 2. Object models are built by vertically stacking re-usable
parts. Here, a chair model is created from a set of four symmetric
legs, and an L-component approximating seat and backrest.

(r,01,...,0n) include the room box r and the unknown
number of objects. As in previous work [4, 6], we approxi-
mate the room itself with a 3D box. Each object is defined
by its type (e.g. table, bed), and by a collection of contigu-
ous 3D geometric parts, which is a function of the object
type

P 0; = (ti, Di1s s Din) - 2)
While the list of parts for each object type ¢ is fixed, we al-
low details of each part to vary among instances of that type.
For example, while all objects of type ¢ ="“table” share a
topology consisting of a top supported by four legs, details
such as the leg width or the top height can vary among dif-
ferent table instances. Further, all objects have to lie on the
floor, with the exception of objects attached to a wall, which
are called frames (e.g. doors and windows) [7].

We create the list of parts defining an object type manu-
ally from a set of re-usable geometric primitives, such as a
set of four symmetric cylinders, used for modeling the legs
of tables and chairs, or an L-shaped structure, approximat-
ing a seat with backrest used for both chairs and couches
(Fig. 2). In this work, we managed to build object models
for eight different categories (bed, cabinet, chair, couch, ta-
ble, door, picture frame, window) from a set of four parts.
Each part is defined by a minimal set of parameters, for ex-
ample, a backrest is a 3D block defined by its height, width
and length. Conditioned on the object type, each part pa-
rameter is constrained within a range of plausible values,
which is set from training data. For example, the backrest
of a couch is usually much thicker than that of a chair. All
object parameters are defined as ratios with respect to the to-
tal scene size, since we do not have access to absolute size
and position when reconstructing from a single image [!].

Priors and likelihood. We use priors on the overall size
and position of an object conditioned on its type [7]. Such
priors are set from text in online furniture catalogs. For ex-
ample, we set the mean and variance of the height of a table
from the online Ikea catalog. The image likelihood is pro-
portional to the distance between the features generated by
projecting the model and those detected on the image plane.
We use three standard features in this domain (edges [1],
oriented surfaces [0] and geometric context [4]), and in-
troduce a fourth one that encourages 3D object hypotheses
whose 2D projection is more uniform in color distribution.

Inference. We use MCMC sampling to search the out-
put space, defined by the parameters of room box, camera,

and objects, which we infer jointly. We use the reversible
jump modification of the Metropolis Hastings acceptance
formula for evaluating discrete changes in the model, which
include adding/removing an object, or changing its type, for
example turning a table into a couch. We use Hamiltonian
Dynamics to sample over subsets of the continuous parame-
ters [ 1], which include the room box parameters, the camera
parameters, and the parameters of each object and its parts.
We rely on data-driven techniques to speed up the in-
ference. For example, we initialize the camera parame-
ters from a triplet of orthogonal vanishing points [6], and
propose new objects from 2D corners detected on the im-
age plane [1]. We also introduce part-specific data-driven
mechanisms, such as proposing legs from pairs of contigu-
ous vertical segments. These mechanisms are shared by all
objects containing that part (tables and chairs in the case
of legs), thus making inference issues transparent to po-
tential new object models created from the available parts.
Finally, we use top-down information about contextual rela-
tionships among objects to inform the inference. For exam-
ple, we propose chairs around the tables in the current scene
hypothesis, and this allowed us to find chairs despite heavy
occlusions, such as the chair behind the table in Fig. 1.
Results. Our method performs slightly better than the
state-of-the-art [8] on the standard room layout error, which
measures the accuracy of the predicted room box (13.7%
error versus 13.8% on the Hedau dataset [4]). For object
recognition, we outperform our previous results [7] on fur-
niture (precision: 53.9% versus 32.5%, recall: 35.7% vs.
20.7%) and frame recognition (precision: 44.9% vs. 33.1%,
recall: 41.8% vs. 18.7%). A qualitative example of a scene
reconstruction is shown in Fig. 1 (bottom right).
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