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Top-down Bayesian inference of indoor scenes

Luca Del Pero and Kobus Barnard

Abstract The task of inferring the 3D layout of indoor scenes from iemgas
seen many recent advancements. Understanding the basieddietry of these en-
vironments is important for higher level applications,lsas object recognition and
robot navigation. In this chapter, we present our Bayes@aremative model for un-
derstanding indoor environments. We model the 3D geomdtey room and the
objects within it with non overlapping 3D boxes, which pr&iapproximations for
both the room boundary and objects like tables and beds. YWaraely model the
imaging process (camera parameters), and an image likeljitbus providing a
complete, generative statistical model for image data. YAfkature of this work is
using prior information and constraints on the 3D geometithe scene elements,
which addresses ambiguities in the imaging process in @owgp: fashion. We also
describe and relate this work to other state-of-the-art@aghes, and discuss tech-
niques that have become standard in this field, such as eistinthe camera pose
from a triplet of vanishing points.

1 Introduction

There has been much recent interest in estimating the 3itafdndoor scenes
from monocular images [2, 8, 9, 10, 14, 15, 19, 23], as thisiges crucial geo-
metric context for higher level tasks, such as object reitmgnand prediction of
human activities. Consider for example Fig. 1. From justreylsi image, human
observers can infer the 3D structure of the room, even whetymiaes are hidden.
For example, we can estimate the boundary between the flaothanwalls, even
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2 Luca Del Pero and Kobus Barnard

Fig. 1 Inferring the 3D layout
of a room from an image is
challenging due to occlusions
and clutter. Here, the bound-
ary between floor and walls
is occluded by the furniture.
We show on the right the
correct position of the 3D box
approximating the room

if it is mostly occluded by furniture. This kind of geomettaderstanding informs
interaction with the environment. For example, one coulerithat the bed provides
a surface for sitting, or that a possible path to the coucls goeund the bed.

A number of computational methods for recovering the 3D sdeagout have
been recently developed based on modeling rooms with siggenetric primi-
tives, such as sets of orthogonal surfaces [14], or 3D bo&e4q]. Despite the
coarse geometric approximation, these approaches habtedrseveral interesting
applications. For example, Gupta et al. [7] used extracieoh®rmation to identify
locations where people can sit or lie, while Hedau et al. f@vged how knowledge
of the 3D environment helps detecting pieces of furnitusehsas beds. Other no-
table applications include inserting realistic computerpipics objects into indoor
images [13], and robot navigation [21].

This chapter extends our previous work on indoor scene stateting [3, 4].
Specifically, we provide additional details on the model #vedinference discussed
in these papers. New contributions include making the @rfee multi-threaded by
allowing threads to exchange informatidi8{4), a new method to make the infer-
ence more robust§8.1.4), and a comprehensive evaluation of all the techsique
proposed{4).

1.1 Background

In the domain of inferring 3D geometry from indoor imagesjsitcommon to
parametrize the scene layout as a 3D box [8, 9, 10, 15, 19, TA%.is often re-
ferred to agoom box as it coarsely models the space of a room as if it were empty.
An example is shown in Fig. 1, where the estimated room baxas/a on the right.
Inferring the room box from an image entails determining3Beposition and ori-
entation of the floor, ceiling and walls that typically defigue indoor environment.
This process presents two main challenges. First, recayéie 3D box requires in-
ferring the perspective transformation that generatedtlge (camera estimation).
Second, clutter and occlusions are a major source of camfusince the room box
boundaries are often mostly hidden (Fig. 1).

Estimating the camera in indoor scenes has been tackled ihg asstrong
model [8, 9, 10, 15, 19, 23], specifically the Manhattan waddumption [1]. This
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states that most surfaces in the scene are aligned withghiregpal orthogonal di-
rections, which can be estimated by detecting a tripletthiogonal vanishing points
on the image plane [17]. The parameters of the perspectojeqtion can then be
recovered analytically from the position of the vanishimangs, and this is a well
understood problem [25]. In Manhattan world indoor scettes three orthogonal
directions are invariably those of the room box.

Addressing occlusions and clutter requires reasoning tatheuobjects in the
room. Hedau et al. [8] detect clutter in 2D with an appeardmased classifier.
More recently, Lee et al. [14] showed the benefits of reagpabout objects in 3D.
Specifically, they proposed modeling objects as 3D boxeshmprovide reason-
able bounding approximations of objects typically foundaoms, such as beds and
tables, and further exploit the Manhattan assumption bgttaming these boxes to
be aligned with the room box. Their results showed that jiiference of the room
and the 3D objects, which addresses ambiguities causedtdgraind occlusions in
a top-down fashion, improves on estimating the room box. &aroach is related
to Lee’s work [14], but we advocate an even more top-down @gagr with a more
unified representation.

1.2 Overview of our approach

Similarly to Lee et al. [14], our goal is to simultaneouslyieste the camera, detect
and localize in 3D the floor, ceiling, and walls comprising ttoom “box,” and
determine the position of the objects in the room. Howevesteiad of using an
object box only to explain occlusions, we want to identifyétg., a couch or a
bed) as well. This simultaneously achieves a fuller undeding of the scene, and
allows object knowledge to help fit the overall geometry. &ample, knowing that
a specific block is approximating a bed rather than, say, dnvbe, adds constraints
on the box’s 3D size and position, as a bed is typically muaretoConversely, the
size and position of a 3D block provide strong cues on thetityeof the object.

Our goal is to provide a comprehensive parsing of the sceategliglobally con-
sistent in 3D, both geometrically and semantically, whihn the lines of the work
of Hoiem et al. [12]. This introduces complex constraintijal make the inference
process challenging. Examples of constraints includegmtavg objects from over-
lapping in 3D, and enforcing that each object is containgdéroom box. Previous
work [8, 15, 19] relied on the framework of structured préidic for inferring in-
door scene models, where inference and modeling are syroagpled. This makes
it harder to adapt the method to handle more complex soufdagoomation, such
as conditioning the position and size of objects on theintitg

Bayesian inference is a natural way to handle these contiglexas it allows
to separate the modeling and the inference. Specificallyprpose a Bayesian
generative model for images of indoor scenes, where we ahamodel the 3D
geometry (room box and objects), the imaging process (Gapaameters), and an
image likelihood. We assume that the image features are@ewdestatistically from
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the projected 3D scene under the camera parameters. Wedifystieer structure by
introducing the notion of an object type. The Bayesian fraork naturally allows
using prior information of the world, which in our case arepdistributions on a
box’s 3D size and position conditioned on its type and on tlear box. For exam-
ple, beds are typically against a wall, while tables arelyilkeund in the center of
the room. In this work, we allow four different types of oljeoxes, approximating
beds, cabinets, couches and tables. We also introduce tioa 10d frames which
are thin boxes “anchored” to a wall, to approximate objeathsas doors. We use
three types of frames: doors, picture frames, and windows.

Bayesian inference allows us to jointly infer all the elettsan our model, with-
out having to commit to partial solutions. For example, pes work [8, 9, 10, 15,
19, 23] rely on initial estimates of the camera parameterd,taey cannot recover
from mistakes in this step. Similarly, both Hedau et al. |8 &upta et al. [7] use an
initial estimate of the room box for identifying beds anddioting human activities
in the room, respectively. Again, errors in the estimatehef toom box cannot be
recovered from. In principle, our approach does not hawegtoblem.

In what follows, we detail with our model for the 3D scene getmy and the
camera §2). We then develop priors that distinguish among objecebdased on
their position and sizetR.1), and then detail the imaging modé&R(2), includ-
ing an analysis of the standard image features used in this ¥\ée then describe
the Markov chain Monte Carlo sampling method that we use riterénce §3).
Important aspects include how to handle constraints duwsargpling, how to use
data-driven methods for efficient sampling, and how to derifice with multiple
threads. Finally, we provide extensive evaluation of oyrapch on two standard
datasetsgd).

2 A Bayesian generative model for indoor scenes

We use a Bayesian generative model, where we assume thatsraeg) generated
by the projection of the 3D scene. We partition model paranse®, into scene
parameterss, encoding the 3D geometry, and camera parameterspdeling the
perspective transformation

6= (sc) . Q)
We define the posterior distribution as
p(6|D) U p(D|6)p(6) . )

whereD are features detected on the image plane@® is the prior distribution
over model parameters.
Scene parameters include the room box and objects in it

s=(r,01,...,0n) 3)
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where the number of objectsand their type are not known a priori. We model
the room as a right-angled parallelepiped whose floor isllghta the x-z plane of
the world reference frame. It is defined by its 3D center, kitieight, length, and
rotation angley;, around an axis parallel to the wonehxis and through the room
center (yaw):

r=(%,Yr Z,We,he I ) 4)

Objects in the room are similarly modeled by blocks, butudel an object cat-
egory,ti, (e.g., bed, table, door). A block on the floor could appratena convex
object such as a bed, or provide a bounding box for a more @agiject, such
as a table. Windows, doors and pictures are approximatddthiit blocks (frames)
attached to a wall. All objects share the same orientgtiaf the room block, fol-
lowing the Manhattan world assumption. Objects must beagtinside the room
box, and they can not intersect each other.

Objects coordinates are relative to the coordinate frarfiakbby the room cen-
ter, and whose axes are aligned with the room walls, which alle“loom coor-
dinates”. We define a coordinate transformation functigg(Xx,y,z) = (X',¥",Z)
for later use, to transform a point defined relatively to treld/ coordinate system
(X,y,z) into room coordinates. Since the world- z plane is parallel to the room
floor, reoorg SIMply applies a translation and a rotation aroundytheaxis defined
by the room yawy. An advantage of storing objects in room coordinates, i$ tha
it allows for efficient computation of intersections amorigests, and between an
object and the room box.

Each object is “anchored” to a room surface, whose indeoigdtas a discrete
variable (5). Furniture objects lie on the floos (= 4), implying that, given the
object height, they coordinate of the object center is not a free parameter.iSpec
ically, yi = —(yr/2) + (h;/2.0), where—(y;/2) is the position of the floor in room
coordinates. Similarly, frames are anchored to one of tHesyahich analogously
constrains their parameters (see Fig. 2). To summarizelijeetqparameters,

o = (ti,s,%,i,z, Wi, hi,l) . (5)
The imaging process is modeled with a standard perspedive@a

c=(f,op) , (6)

wheref, @ and  are, respectively, the focal length, the pitch, and theandle.
Since absolute positions cannot be determined when recectiag from single im-
ages, we arbitrarily position the camera at the origin ofabed coordinate system,
pointing down the z-axis. The extrinsic camera rotatiopscfied by three degrees
of freedom, are fully determined hy, ¢ and the yawy of the room (see Fig. 3).
Pitch and roll are constrained within ranges of plausibleies for indoor scenes
(p € [-60°,60°]), Y € [-10°,10°] ), while the focal length has to be positive. We
further assume unary aspect ratio, no skew, and that theipainpoint coincides
with the image center.
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(x,.z,)
! 3 o 1

Fig. 2 The coordinates of the objects are stored in a coordinate fralatve to the center of the
room box, and whose axes are aligned with the room walls. Heteframes are “anchored” to a
wall of the room box, seen from above. Walls are numbered from3) &ind this index is stored
in variables, which imposes constraints on the parameters in Eq. 5. For exafopthe frame on
the right, we have = 1 andx; = (w; /2). Further, since frames are approximated with thin blocks,
we setw; = &, with € = 0.01 units. For the frame at the bottom= 2,z = (I,/2), andl; = &

2.1 Mode priors

Priors on scene elements improve global scene understabgliielping resolve
ambiguity during inference, and also support identifyitgects based on geometry
cues, such as size and location, alone. Previous work hashblseks in the scene
to explain occlusions [15] and to infer what regions of the sfiace are occupied
by generic objects [10]. In this work, we assign a semanbelléo our blocks (e.g.
couch, door, etc.), with each label corresponding to spepiior probabilities on
object size and position in 3D. Because we are reconstgufriom a single image,
we have one overall scale ambiguity, and thus priors on obgize” and position
are defined relatively to the room box.

As an example of information captured by the priors, wardrolbinets are tall
and narrow and typically against a wall, while tables areallgshorter, wider, and
in the middle of the room. Similarly, a door is quite tall adithes the floor, while
picture frames are much shorter and are typically foundeérhigher half of a wall.

Assuming independence, the overall prior for the modelpatars is given by

P(6) = mir)ic) [ o) ™

wherer(r) is the prior on the room boxy(c) is the prior on camera parameters, and
(o) is the prior for one oh objects in the room. We now describe each of these
components and how we set their parameters from trainiray dat
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Fig. 3 Camera parameters. The extrinsic parameters define the positioari@ntation of the
camera with respect to the world reference frame. Since absiigte and position cannot be de-
termined, we arbitrarily position the camera at the origin efworld coordinate system, pointing
down the negative z-axis. The room box can rotate aroundatss;-thus determining the yaw of
the camera (left column). Two more angles, a rotation aroundaheera z-axis (roll, mid column)
and a rotation about the x-axis (pitch, right column) compileéecamera orientation specification

2.1.1 Prior on room box

The room box is defined in terms of the center position in @Ryr,z) and its
width, height, and lengtkw;, h,1;). First, we define a prior over the ratio between
the long dimension to the short dimension, with

maxw;, |
= M ) (8)
min(wg, I;)
We use this formulation since we do not know in advance whiafedsion is the
largest. We also put a prior on the ratio of the long dimengiathe height

max(wr, Iy )
T
)

(9)

The prior distributions over these two quantities are sddg@elatively non infor-
mative, but help reduce the time spent in regions of the sampbace with low
probability, especially during the early stages of theriafee process. We set both
parameters to be normal distributions, independent frach ether

T[(I’) :L/V(rrlyl-lrlaUrl)L/V(rrZJJrZyUrZ) . (10)
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Fig. 4 Distinguishing objecs using their size. The ratio between thghbh®f an object and the
largest between its width and length varies considerably émtvbeds and cabinets. In this exam-
ple, also the ratio between width and length is quite discrithiaa

2.1.2 Prior on camera parameters

We found that the camera height from the flegiis a particularly indicative prop-

erty in indoor scenes, as small variations in this quanésult in major changes in
the image plane. Intuitively, pictures of indoor images @mely taken by putting

the camera close to the floor or to the ceiling. Since we cansetabsolute sizes,
the prior is defined on the ratig, between camera height and room height

1i(c) = A (Yeh, Heh, Och) - (11)

2.1.3 Prior on objects.

Several categories of furniture and frames have a veryndisie size (Fig. 4). Here
we introduce a general formulation for a prior for a specibiject of category; = 1
that exploits this intuition. Given an objegt defined in terms of its sizem, h;, I;),
and a room with dimensionsv, h;, ), we use the following quantities

e ratio between the object height and its largest other ditoamg = h; /max(wi, I;)
(Fig. 4). This helps distinguish between categories thattalter than they are
wide, such as wardrobes, and short and wide objects, suadas b

e ratio between the object long and short dimensiogs: maxwi, li)/min(w, ;)
(Fig. 4). Again, we use this formulation since we do not knavadvance which
dimension is the largest. This quantity discriminates letwfurniture with a
roughly square base, and furniture with a rectangular BEsis. component is
not used for frames, since one of their width or length is gbvaegligible.
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Fig. 5 Learning the ratio between room height and object heighis bantity is very informa-
tive, and we estimate its statistics from training images. We usetitebetween the two arrows,
provided that the object is against or close to a wall. Whiléosabf lengths of collinear seg-
ments are normally not preserved by projective transformationly @ffine), in this domain the
vanishing point for vertical segments is usually at infinity, aimg method provides a reasonable
approximation

e ratio between room height and object height= h; /h;. Intuitively, the height
of a bed is quite small with respect to the room height, whetka height of a
wardrobe or of a door is quite large (Fig. 5).

e whether the object is against a wall or not. This is based ernirttuition that
some objects tend to be against a wall (e.g. beds) more thansattables). For
frames, we use whether or not the frame touches the floor.>@onmgle, doors
touch the floor, while windows typically do not.

The first two ratios carry information on the object struetiand do not depend
on the scene, while the last two encode information on the & position of an
object relatively to the room box. The first three quantif@w a normal distribu-
tion

m(oilti = 1) = A (rij; Uy, O7j) (12)

for j = 1,2,3. Each category has differentu;;, o7j), and for object; we use the
prior distribution for the category it belongs to, denotgd;bNotice that from now
on we will use the shorthand;(o;) for (0|t = 7). Last,d; follows a Bernoulli
distribution7t(d;). Given an object;, we combine the components of its prior prob-
ability as follows

3
(0)) = m(di) [] (o) - (13)
Tl Tl Dlnj

2.1.4 Setting prior probabilities from data

As mentioned above, the first two components of the objectr glo not depend
on the scene. For each categarywe set(Ur1, 071, Ur2, Or2) using fifty random

examples selected from online furniture and applianceslagd. We recorded their
dimensions, provided in the text description, and the meatsvariances of the
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relevant ratios. We used the Ikea catalofpr beds, couches, cabinets and tables,
and the Home Depot catal@dor windows, doors and picture frames.

Setting the parameters for the remaining two priors is mblenging, since
they relate the size of an object category to that of the r@ord this information is
not available in furniture catalogs. In this case, we useyerdata, and sé€fics, Oc3)
as explained in Fig. 5. We also use images tagd), which we approximate as the
frequency at which an instance of an object of categois/against a wall, or floor
if it is a frame. For training, we used the images in the tragnsplit of the Hedau
dataset [8], omitting images where we could not tell whetig@iece of furniture
was against the wall or not.

Last, we set the parameters of the priors on camera and rogrfrdyo training
images. We manually fit an empty room box and the camera todmiaghe Hedau
training set, from which we set the parameters [4].

2.2 The image model

Our image model is similar to the one used by Schlecht andaBdni8]. Specifi-
cally, we assume that image featukes- (fy, ..., fs) are generated by the projection
of the 3D scene under the given camera. We use three feapggtiyat proved use-
ful in this domain, specifically edges [3, 4, 14], orientatsurfaces [14, 15], and
geometric context [8, 15].

2.2.1 Image edges

We assume image edges to be generated by the blocks in the $germeasure
the quality of a fit by comparing the set of eddesdetected on the image plane
to the set of edgeBy generated by projecting the model. As in Schecht et al. [18],
we define a likelihood functiomp(E4|Eg), which we specify using the following
intuitions:

e An edge pointey; € Ey detected in the image plane should be matched to an
edge poinegk € Eg generated by the model. If the match is good the two points
should be very close to each other, and the difference imtatien between the
two edges should be minimal. We usgeyj|egx) = -4 (djk, 0, 04) A (@i, 0, Tp),
wheredjy is the distance between the points, gngdthe difference in orientation
between the edges.

e \We penalize a detected edge point that is not matched to adglradge (noise).
We definepy, as the probability of such an event occurring.

e We explain points irEg not matched to any point iRy as missing detections,
and define probabilitiepnmiss and psmiss The former is used for “hard” edges

1 http://www.ikea.com/us/en/catalog/categories/departsiieetiroom/
2 http://Iwww6.homedepot.com/cyber-monday/index.html
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arising from occlusion boundaries, such as the edges thatdpto the silhouette
of an object. The latter is used for “soft” edges that are li&s$y to be found by
the edge detector, such as the room edges and non-silhedgtie from objects.
It is less likely that a detector will miss a “hard” edge comgzhwith a “soft”
edge. Note that one of the advantages of using a full 3D mdslghat we can
determine whether hypothesized edge point&grare hard or soft.

We then have

B(EalEs) = phplimssohms [ pleajlear) (14)

(j.k)ematches

where N, is the number of edge points labeled as noise, [Hgglss (Nhmis9 the
number of missed soft (hard) edges. We match points in a gfiastion by finding
the closest poingg to a data edgey along the edge gradient, provided that this
distance is smaller than 40 pixels, and the difference iendaition is less than.®
radian. We further adjust this likelihood function to makdeiss sensitive to the
number of edge points, which we found makes it more stable @Varger variety
of input data. Specifically, we use

p(Ed|E0) ~ f)(Ed‘Ee)(thisstNsmisSWLNanNmatches}_1 . (15)

2.2.2 Orientation surfaces

Based on the Manhattan world assumption, most pixels indbresare generated
by a plane aligned with one of three orthogonal directioms] @e can estimate
which one using the approach by Lee et al. [14]. We compareitteg orientation
Oy detected from the image plane with the orientation surf&@ggenerated by
projecting our model. We approximgpéOq4|Op ) by the ratio between the number of
pixels where the orientation detected on the image plareeagrith the orientation
predicted by the model, and the total number of pixels.

2.2.3 Geometric context

Following Hedau et al. [8], we also consider geometric cxint@bels, which esti-
mate the geometric class of each pixel, choosing betweeatliijoor, ceiling, left,
middle and right wall. This is done using a probabilisticsslifier trained on a mix-
ture of color and oriented gradient features [11]. We useditke and the pre-trained
classifier available online [11]. For each pix®l, this provides a probability distri-
butiongg, = [gaa, ---,dCes) Over the six classes. Given the labedredicted by the
model for pixelpx, we definep(gad pk) = p(ga|pk =1) =9q , and

p(cle) = Znc RO 6)
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where we average the contributions of all image pixels. &the available classifier
was trained against data where only furniture was labeletjgsts, and not frames,
we consider frames as part of the wall they are attached tbnanhas objects when
we evaluate on geometric context.

2.2.4 Combining thethreefeatures

Assuming independence among the features, we define olihdike function
P(D|6) = P(Ed|Em)p(Oq|Om)* P(GC|B)F (17)

wherea andf weigh the importance of the orientation and geometric cdnitee-
lihoods, relative to the edge likelihood. We ¢et= 12 anda = 6 by running our
algorithm on the training portion of the Hedau dataset [8rddwe used a coarse
grid search ovea andf3, with a step of 2, using the room box layout error (defined
in §4) as an objective function.

Later, in the results (Fig. 18) we illustrate how these tliea¢ures work together.
Errors in the edge detection process can be fixed using atientsurfaces and ge-
ometric context, and vice versa. Using edges also helpsowvimgy the camera fit
when starting from a wrong estimate of the vanishing pointsch are detected at
the beginning and used to initialize the camera paramdtefact, since the algo-
rithms for computing orientation maps and geometric cdardepend on the initial
vanishing point estimation, this feature is compromisethiy/initial error, whereas
edges are not.

3 Inference

We use Markov chain Monte Carlo (MCMC) sampling to search gheameter
space, defined by camera and room box parameters, the unknowboer of ob-
jects, their type, and the parameters of each object. Togehtre discrete structure
of the model, which includes the unknown number of objeats, the type of each
of them, we use reversible jump Metropolis-Hastings (MH)gh To change the
continuous parameters, which comprise the room box, therand size and po-
sition of each object, we use Hamiltonian dynamics samgtliay. The proposals
from these two samplings strategies are often referred tuagp” and “diffusion”
moves [22].

The 3D structure of the model introduces several consga@nt dependencies
among parameters, which must be carefully taken into adoduring inference.
Specifically, objects cannot overlap in 3D, and they haveet@ftirely inside the
room box. Further, the camera must be inside the room box,nahdvithin the
volume occupied by any of the objects. Enforcing these caimés during inference
can introduce several ambiguities, as illustrated in F{g),6using a birdview of
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(® (h)

Fig. 6 Sampling over subsets of parameters handles containment cotss{tap two rows) and
avoids ambiguities (bottom row). Consider sampling over thampeaters of a single object at a
time. As the object expands, other objects have to shrink talax@rlap. For examplé has to
shrink to allowB to grow (@-b), as shown also in the corresponding birdviewse). Similarly,
when sampling over the room box only, objects have to shrink gdftbeg are entirely in the room,
like objectB in (c) and ). Instead, sampling over two objects at the same time could result in
conflicts such as ing), where bothA andB are contending the same 3D space. Sampling over the
room box and an object jointly would create similar conflidts (

the room box. Consider sampling over objects A and B simaliasly. This could
result in a conflict where object B tries to expand towardsléifiie and A towards
the right, as illustrated by the arrows. A similar situat@am happen when the room
box is trying to shrink and object B is trying to expand (h).

To avoid these ambiguities, we use three different typesoaficuous moves
over subsets of the scene parameters, and define rules fuirapdoe model so that
no constraint is violated. In the first one, we sample oveiptrameters of a single
object, and we enforce constraints by shrinking other abjieccase of overlap, and
expanding the room box in case it is not big enough to contanobject (Fig. 6,
a-b). The second move samples over the parameters of thebmoonly, and adapt
the objects to respect the constraints. As the room box bes@maller, we shrink
objects in case they end outside the room (Fig. 6, c). Thigjointly sample over
camera and room box parameters, by enforcing constraiimslas previous move.
Further, for all the three moves just discussed, we enfdraethe camera is inside
the room box, and is not within the volume occupied by an dbjEtese are corner
cases that occur less often, and we simply reject sampligivigthese constraints.
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Diffusion moves and Jump moves are alternated throughgerteince. We sum-
marize the entire process here, and describe each comporastail in the follow-
ing Sections:

1. Initialize the parameters of the camera and of the room box
2. RepeaK times

a. Generate a new sample with one of the following moves,eshcendomly

Jump 1: add an object to the scene (furniture of frame)

Jump 2: remove an object from the scene

Jump 3: pick a random object, and change its type

Diffusion 1: pick a random object and sample over its paranset

Diffusion 2: sample over the room box parameters only

Diffusion 3: sample over room box and camera parameters

b. Reject samples that violate the constraints on the capms#ion (camera
outside the room or inside an object).

3. Return the sample with the highest posterior

We rely on a multi-threaded strategy to efficiently explorerenof the space on
modern multi-core workstations. Each thread executesnbeegure above, and, at
the end, threads are allowed to exchange information, as séhe objects might
be found by a thread and missed by the others, and vice W3<.(This exchang-
ing procedure is followed by additional sampling, and wepatithe best sample
found. In our experiments we used 20 threads, and the whideeimce process
takes on average ten minutes per image.

In what follows, we first detail with the diffusion moves in &e§3.1, where
we develop concepts needed to better discuss the Jump rgi@2esand how we
initialize the room box and the came$d.3. Last, we explain how to exchange
objects among thread8s.4.

3.1 Diffusion moves

As illustrated in Fig. 6, we sample over subsets of the scan@npeters and specify
rules to make the model comply with all constraints. We usmittanian dynam-
ics sampling, which were used by Schlecht et al. [18] for@ay the continuous
parameters of geometric models for furniture with a sinflarametrization.

We use Neal's formulation of Hamiltonian dynamics [16] tongde over phase
space, where the energy function is defined in terms of tme ghstribution of the
parameters and the image dat®,D)

E(6) = —log(p(D[6)) —log(p(6)) - (18)

We follow the dynamics using leapfrog discretization [18}d compute the deriva-
tive of the potential energy with numerical approximatiaich is the current bot-
tleneck for computation.
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3.1.1 Sampling over the continuous parameter s of an object (Diffusion 1)

When sampling the parameters of objegtwe adapt the room box and the other
objects so that no constraints are violated. When we detemtentap with another
object, we shrink the latter, and delete it if it is complgtebntained ino;. We also
check whetheg; is partly outside the room. If this is the case, we expand dbenr
box so that; is entirely inside, and further adjust the position of thieestobjects
(§3.1.2).

To reduce the sampling time, we designed efficient ways forpliag object
parameters. For example, consider the window in Fig. 7 @Jind the correct fit,
the window height must be stretched, and its center must tiiedtdownwards.
To do this efficiently, we vary the height of the window by kewmpthe upper edge
fixed. In this example, we would run Hamiltonian dynamics lo@ dbject heighly;.
At each leapfrog step a proposed change in the height= h}fl + 0 is followed

by changing the position of the object center gs= y}*l - %, achieving the result

in Fig. 7 (b). This technique is effective in our frameworkce typically one edge
of the object is correctly “latched” to an image edge, givangroposal mechanism
from image corners discussed§d.2.1, and we thus want to find the correct size of
the object without displacing that edge. There are fourdtivas to sample a frame
using this strategy, and six for furniture objects, as thated in Fig. 7 (c), (d) and
(e). When executing move Diffusion 1 for objext we iterate over all four possible
directions ifg; is a frame, six if it is a furniture object. For each directiare use 20
leapfrog steps, and at each step we enforce the containmestraints.

3.1.2 Sampling over the continuous parameters of the room box (Diffusion 2)

When sampling the parameters of the room boxe adapt all the objects so that no
constraints are violated. When we detect that an object ty/martside the box, we
shrink it, and delete it if it is completely outside. As foetbbject parameters, we
sample along one direction of the room by keeping one eddehta” (Fig. 7, third
row). Six sampling directions are available (fourth rondave use 20 leapfrog
steps per direction. At each leapfrog step we enforce théagonent constraint,
and we further apply a transformation to the objects in tleroto preserve their
projection on the image plane. Since room objects parameter relative to the
room box coordinate system, changing the 3D position of doerbox would not
preserve the projection of the room objects. An example @svshin Fig. 7 (g-h),
where a small change in the room center causes the objectve asavell.

We address this as follows. We define the room 3D cenfe¥ o, ry + Sy, Iz +
o) at leapfrog step, where all the parameters are relative to the world cootdina
system, andry, ry,r) is the room center at leapfrog stép- 1). Let us also define
(%i,Yi,z) as the center of object at (t — 1), this time in room coordinates. For each
objecto;, we compute the position of its center at steys(x; + 3y, Yi + 0y, z + 0,

where(dy, 5r'y, ;) = 'coord(Orx; Oy, Orz). The result of applying this transformation
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Fig. 7 Efficient strategies for sampling over continuous parametesstpper edge of the window
in (a) is positioned correctly, and the correct fit for the window d#e obtained efficiently by
dragging down the lower edge while keeping the upper edge flxg We designed moves that
achieve this by sampling the continuous parameters of the wimd@D (see text). For a frame,
this principle can be applied to any of the edges, and thigesdaur possible sampling directions,
denoted by the arrows irc), For furniture we have six alternatives, as illustrateddpdnd €),
which is a birdview of the modelf)is an example of the effects of this move when sampling over
the direction denoted by the arrow. The same strategy is also usexd sampling over the room
box (third row), where we have six possible directions, illugwan () and k) (two of those are
shown in both, denoted by the green arrows). Since object owies are relative to the room box,
changes in the latter have the undesirable effect of chartgmgrojection of objects already in
the room. For example, we only changed the 3D center of the rapnirbm (g) to (h), and this
“shifted” the projection of the blue block as well. By intrating a transformation that preserves
the projection of the objects in the room (see text), we olitarresult in {)

is shown in Fig. 7 (i), where the room box has changed, butbfecoblock kept its
position on the image plane.
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Fig. 8 Sensible sampling with interacting boxes. Suppose sampling ozdaldick projected over
the bed &), along the direction denoted by the arrol) for N leapfrog steps. For a few steps,
the bed tries to expand, and the containment constraints floecklock on the left to shrinko].
Then, the bed tries to shrink)( but we see that the left block does not return to its init@difon.
The behavior in the second row is more desirable, where theltefk Bgrows” back to its initial
location as the bed shrinks)( but does not grow beyond that poifi.(In the third row, we show
the desired behavior of the sampler when the room box is tryirxpand along the direction of
the arrow. As the room shrinks, so does the dwhich completely disappears when it is fully
outside the roomh(). When the box starts to expand again, the bed grows backitutiéd size (),
but no further )

3.1.3 Sampling over camera and room box parameters (Diffusion 3)

We sample over camera and room box parameters jointly, fotah of 10 param-
eters. We found that sampling over the camera parametezpéndently typically
produces samples with a lower posterior, due to correlatwith other scene pa-
rameters. For example, sampling over the focal length shadridve the model to the
current perspective distortion, which provides a bettegmahent of the projected
model edges and the image edges. However, changing theléocgh also modi-
fies the size of the projection of the 3D scene, and these twedare conflicting.

Hence, we jointly sample over camera and room box, as thagvalto account
for some of the correlations between camera and scene pr@imieor this move,
we use Hamiltonian dynamics for 20 iterations. At each stepenforce the same
constraints as in the case where we sample over the room Ix on
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3.1.4 Sensible dynamicswith multiple boxes

The constraints in the model give rise to an additional moblllustrated in Fig.
8. Suppose sampling over the block projected over the bedl@)g the direction
denoted by the arrow (b) fax leapfrog steps. For a few steps, the bed tries to
expand, and the containment constraints force the bloclhereft to shrink (b).
Then, the bed tries to shrink (c), but we see that the leftkotimes not return to
its initial position. The behavior in the second row is moesidable, where the left
block “grows” back to its initial location as the bed shrirey, but does not grow
beyond that point (f). In the third row, we show a similar aifon, where we show
the desired behavior of the sampler when the room box isgrigrexpand. As the
room shrinks, so does the bed (g), which completely disagpehen it is fully
outside the room (h). When the box starts to expand again gthg@itows back to its
initial size (i), but no further (I). The procedure implentiag this strategy for the
sampling of a set of continuous parameters is as folldysi¢ the initial sample,
and 6y is the sample aftel leapfrog steps).

2. Foreverystep=1,...,N

a. Computeg; from 6 _; by following the Hamiltonian dynamics.

b. Whenever the posterior needs to be evaluated, computeaitcopy of6_1
where we apply the containment constraints. Never applctmstraints on
either6; or 6,_1

3. Seteout - eN
4. Apply the containment constraints 6

This procedure implements the desired behavior illusiraterFig. 8, by keeping

track of the initial positions and sizes of all objects in thedel, and applying the
containment constraints only when the posterior needs évdleated. Finally, these
constraints are applied to the last sample, which will bestheting point for the next
sampling move.

3.2 Jump moves

One of the main challenges in the inference process is dagigmmp moves to
efficiently add objects to the scene. Since the samplingesisesp large, naive jump
proposals, such as samples from a prior distribution, aikainto be accepted, and
this leads to unacceptably long running times. To face thédlenge, we introduced
a data-driven strategy [22, 26] to condition the samplinghendata, by proposing
samples from image evidence in a bottom-up fashion. Fyniheeexploit the Man-
hattan world assumption [1] that most surfaces in the workdadigned with one
of three orthogonal directions, as this provides strongstraints on the parameter
space.
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In Fig. 9, we illustrate how our proposal mechanism combihesManhattan
world constraints and the advantages of data-driven intereHere, we show that
intersections of line segments on the image plane, whichralVétage cornerstyp-
ically correspond to the projection of corners that areagtimal in the 3D world.
Using projective geometry and Manhattan orthogonalityst@ints, an image cor-
ner can be used to propose furniture objects (Fig. 9, f), éa(g) and room box
candidates (h), which are accepted with high probability.

To achieve this goal, we first estimate the triplet of orthmgosanishing points
defining the Manhattan world directions [17]. This providegood estimate of the
camera focal length and pose, which are needed to proposéo8kskirom image
corners. In what follows, we describe the procedure fomesing the vanishing
points §3.2.1), how to detect image corne§8(2.2), and how to use them to propose
both objects in the sceng3.2.3) and room box candidate3(3).

3.2.1 Vanishing point estimation

We first detect straight edges and fit line segments to thenguke straight con-
nected edge detector by Hoiem et al [11]. Then, we detecshiarg points follow-
ing the RANSAC procedure proposed by Lee et al [14]. At eaep,ste randomly
select three pairs of line segments and position a vanighdmgt at the intersec-
tion of each pair. We then check the orthogonality of the sfainig points and reject
triplets that are not orthogonal. We then estimate thengitticamera matriK from
the Choleski decomposition of the absolute conic matriy,[@bich is fully deter-
mined by the position of the three vanishing points. We tejgalets that provide a
non realistic focal lengthf(¢ [50,2000, measured in pixel).

For each valid triple¥; (v1,v2,v3), we compute the objective functioi(\t) as
follows. First, we compute the angular distamogs , vi) between each line segment
s and each vanishing poin (Fig. 10). A segmens is labeled as an outlier if
mink=1230(s,Vk) > 0.06. If nis the total number of outliers, we have

() = (; mi”k=l~2-|3i“(s’vk)> /n (19)

wheren is the number of inlier line segments in the RANSAC procedljris the
length of segmerg;, and is used to assign a larger weight to long segments.

We keep the valid triplet of vanishing points minimizirfigv;) and such that the
ratio roy between the number of outliers and the total number of setmigtess
than Q1. If no triplet satisfying these constraints is found, weréase this threshold
by 0.1 and repeat until a triplet is found. This allows for consiig first only triplets
supported by a large number of segments, and, if none issélajiwe allow a larger
number of outliers.
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Fig. 9 Detecting vanishing points (top) to find orthogonal cornéattom). Most surfaces in in-
door scenes are aligned with three principal orthogonattioes. This defines a triplet of orthog-
onal vanishing points in the image plane, which we find in a RARSAashion €) from straight
detected segmentb)( Segments are assigned to one of three groups based on the vgipisimit
they converge tod). Intersections of edges in different groups, which we callgemeorners, are
typically generated by the projection of an orthogonal 3ineo €). Given an estimate of the cam-
era pose computed from the vanishing points, an image corner aasedeo propose a furniture
object ), a frame §), or the room box )

Fig. 10 The angular distance
a between a segmestand its
vanishing point..  measures
the angle betweesand the
line through the mid point of
sandv

3.2.2 Imagecorners

Given the estimated triplet of vanishing points, each liagnsent is assigned to
the vanishing point minimizing the angular distarecg8], thus partitioning them
in three groups. Segments with> 0.12 are not assigned to any group and con-
sidered as outliers. Notice that this threshold is lesstdtian the one used during
RANSAC, as we want to have more candidates at this point. Amgtke is shown
in Fig. 9 (d), where the three different groups are showrpeetvely, in green, red
and blue, and the outliers in black.

We assume that two image segments in different groups werergted by seg-
ments that are orthogonal in 3D. The intersection of two |egments, which we
call image corner, is thus likely to be generated by a 3D goinal corner, such as
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“ssen,,

Fig. 11 Creating orthogonal corners from line segments. Given a paegients converging to
different vanishing pointsa), we first find their intersectiorb). We do not create corners if the
distance between the intersection and each segment is large3Qhzixels. We position the third
segment of the corner on the line through the corner positiontlaadhird vanishing pointd).
Two corner configurations are possibted). Last, we “rectify” the cornerd), to make sure it
satisfies the orthogonality constraintimposed by the Manhattatdywhich is needed to propose
3D objects from a 2D corner. In fact, corners are created fuetected image segments, which
do not necessarily satisfy these constraints due to errors in eedsdection. Specifically, instead
of using the image segments, we consider their projections onrtbeHrough the corner center
and the vanishing point€), which are guaranteed to be orthogonal. The final corneerigeced
in pc, and defined by segmenps pc, p2pc and pspc. Notice thatpspe was hallucinated by using
a vanishing point, and does not need to be “rectified”. In tisetl@o rows, we show examples of
corners created from pairs of segments

the corners of the cabinet or the inner corner of the room shinwrig. 9 (e). Given
an image corner and an estimate for the camera pose, we qaosprd8D objects in
likely positions. However, this requires knowing the thsegments forming the im-
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age corner, but typically only two are visible due to ocabusi, like the bottom left
corner of the cabinet in Fig. 9 (e). We address this problerthaliucinating” the
third segment when it is not visible. In the case of the botieftrcabinet corner, we
consider the intersection between the two visible segmeititich converge to two
different vanishing point, and hypothesize that the thedrsent converges to the
remaining vanishing point in the triplet. This is discussedetail in Fig. 11, where
we also explain how to use the Manhattan constraints to ertberorthogonality
of the corner. Last, we stress that, since the main purposerogrs is to propose
the correct position and orientation of objects in 3D, anttheir size, the length of
corner segments in 2D does not provide any valuable inféomaas long as their
direction is correct.

3.2.3 Adding objectsin the scene using image corners

As discussed above, we create image corners by considbgrnigtersection of each
pair of segments converging to different vanishing poiAtsorner is then used to
add an object to the scene in a bottom-up data-driven fashiarder to increase
the acceptance probability in the MH acceptance formula [5]

First, the image corner is used to estimate the positionefumiture object in
3D (Fig. 12 and 13). The proposal is conditioned on the ctirestimate of both
camera pose and room box. Second, we randomly select theofythe object,
such as bed, and use the priors for that category to propesgzé of the object.
Third, to further increase the acceptance ratio of jump rmpwe use a delayed
acceptance mechanism. In fact, corners help propose slgethe right position,
but the size sampled from the prior is often inaccurate. Hene briefly sample
over the continuous parameters of the newly added objectdebnsulting the MH
acceptance formula to decide whether to accept or rejectimple.

The full proposal procedure to add a furniture object in tene is as follows.

1. Randomly choose an image corner, and determine whettsepdinting up or
down (Fig. 12)

2. Determine the object categoryby randomly choosing from the four available
classes (bed, cabinet, couch, table), where each claskéaarhe probability.

3. If the corner is pointing up, find the position of the 3D carmn the floor as
explained in Fig. 12, otherwise find the position of the 3Dnesras explained in
Fig. 13.

4. Sample# (ri3; Ur;, 0r3) t0 propose the ratioiz between the room height and
that of the proposed object height Seth; = 2—[3 whereh; is the current height
of the room box.

5. Sampleu from uniform distribution% (0,1). If u > 0.5, set the widthw; of the
object to be larger than its length if u < 0.5 setl; to be larger. The next two
steps are defined for the case- 0.5, and can be adapted to the opposite case by
swappingw; with I;.
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6. Sample fromA4/(ri1; Uy, , Or1) to propose the ratio; betweerh; and its largest
dimensionw;. Setw; = :I‘—'l usingh; from the previous step.
7. Sample from4#/(ri2; Ur,, 071) to propose the ratio, between the object largest
and shortest dimensiongi(andl;). Setl; = :V—' usingw; from the previous step.
8. Shrink any furniture object in the scene ccﬁliding witle froposed one
9. In case the object does not fit in the room, expand the rooxm Blais might
involve lowering the position of the floor, raising the cegi or increasing the
room width and/or length.
10. Briefly sample over the object continuous parametensguBiffusion move 3
(delayed acceptance)
11. Accept or reject the proposed object by consulting theddekptance formula

Similarly, the procedure to add a frame in the scene is sumpethbelow. Notice
that the move adding an object chooses whether to add adteribject or a frame
with 0.5 probability.

1. Randomly choose an image corner

2. Determine the object categoryby randomly choosing from the three available
classes (door, picture frame, window), where each clasthieasame probability.

3. Find the position of the 3D corner, and the room v&lit is anchored to as
explained in Fig. 14.

4. Sample# (ri3; Ur;, 0r3) to propose the ratioiz between the room height and
that of the proposed frame height Seth; = r% whereh; is the current height
of the room box.

5. Conditioned ors, the frame has either negligible width or negligible lendth
the latter case, sample fromt'(ri1; lir,, 071) to propose the ratio, betweerh;
and widthw;. Setw; = r% usingh; from the previous step. Whem is negligible,

hi

setlj =
6. Shrink aﬁwy frame in the scene colliding with the proposeel o
7. If the frame does not fit on the wall, expand it.

8. Briefly sample over the object continuous parametersguBiffusion move 3
(delayed acceptance)
9. Accept or reject the proposed frame by consulting the Mé¢ptance formula

3.2.4 Other jump moves

The remaining two jump moves respectively remove an objech fthe room, or

change the type of one of the objects. The former simply deletandomly selected
object, and the proposed change is accepted or rejectegl tsirMH acceptance
formula. Instead, changing the type of an object involveg ohanges in the prior.

First, an object is randomly selected, and we propose chgritg current type to

a different category, also randomly selected. For exangplanging the label of an
object from “bed” to “couch” results in using the distribori on size and position
for couches when evaluating the object prior probabilithijlerbefore the prior for
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Fig. 12 Finding the 3D corner of a furniture object from an image careenditioned on the
current room boxpe = (pex, Pey) denotes the position of the corner on the image planePand
(Pex; Pey, — f) is the corner in the 3D camera reference frame, wiiésethe focal length. We first
consider the segmepgpc: if psy > pey in the image reference frame, the image corner is pointing
upwards, and we assume that it was generated by an object cortiee omom floor, delimited
by the dashed lines (for the complimentary case of a downwardecmsee Fig. 13). Then, we
cast a ray through the camera cerdemnd the image cornd®, and find its intersection with the
room floorPy;, which defines the 3D position of the object corner. Assumingatbjare aligned
with the walls, we define the coordinate systexnY, Z), which is aligned with the room walls and
centered iR, the XZ plane coinciding with the room floor. We know the 3D cornerl wipand
along the positivey’ axis, and we use the rays between the camergaahd p, to determine the
directions along th& andZ axis. We first find the intersectid{ between rayp;c and the floor,
which, due to small errors in the camera estimate, does not liglgxactheZ or the X axis. We
then computé™, as the closest point #§ on either theX or theZ axis, which determines that the
3D corner in the picture expands along the posiivexis. We repeat the same fér by usingpy,
and in this example the 3D corner expands along the negétasas

beds was used. Again, the proposed change is evaluatedthsidH acceptance
formula. Last, we do not propose changing furniture objéttis frames or vice
versa. This means that, for example, a couch can only be eldantp a table, a bed
or a cabinet, while a door only into a picture frame or a window
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Fig. 13 Finding the 3D corner of a furniture object from a downwantgge corner. We assume
that a downwards image corner is generated by a corner onptwd 803D object (For the compli-
mentary case of an upwards corner, see Fig. 12). We cast a ragkhtioel camera center and the
corner position in the imag®,, and find the intersectioR,; between this ray and the closest room
wall. The 3D position of the corner can lie anywhere on the (ifie- t)c+tPn ) betweerP: and
the camera centex. Any t € [0,1] defines a valid 3D positioR for the corner, and we choose
by randomly choosing from the intervfi.4,1.0]. We set the lower bound ta4 since values of

t too close to O result in positioning the corner too close to the canvehich is a non realistic
configuration. We assume that the object is aligned with the raaits and floor, and knowing
that the 3D corner is pointing downwards, only the directialomg theX andZ axis are left to be
determined. Similarly to Fig. 12, we find the intersect®frbetween rayp;c and a plane parallel
to the room floor and passing through andP; as the closest point ] on either thex or theZ
axis.P; andP, determine the corner directions in 3D alod@ndZz, which in this example are the
positiveX axis and the positiv@ axis

3.3 Initializing the room box and the camera parameters

We initialize the parameters of the camera and of the roomblygroposing candi-
dates from the orthogonal corners detected on the image pgiach corner is used
to generate a candidate, and we useNlieom box candidates with the highest pos-
terior to initialize theN threads used for inference. While we do not solely commit
to these proposals, since the inference process will madidyn box and camera
parameters, we found that a good initial estimate of the rborparameters makes
the inference more efficient. We now discuss how a cornerésl i@ generate a
candidate.
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Fig. 14 Finding the 3D corner of a frame from an image corner. We cast hetayeen the camera
centerc andP;, and find the intersectioR,; with the closest wall, which determines the position
of the corner in 3D. We know that the frame will expand downwaod the wall, as the corner
on the image plane is pointing down, but we have to determin8Eheorner direction along the
X axis. We do so by considerirfgf andP;, which are obtained by intersecting ragsc and poc
with the wall the frame is anchored to. Due to errors in the carestimate, we cannot expet
andP; to lie exactly onX, and we then consider their projectionsX¥nP, andP.. P; defines the
direction if the distance betwed® andP] is smaller than the distance betwenandP;, and
useP, otherwise. This is equivalent to choosing the direction tlest Isatisfies the orthogonality
constraints. In this example, we usdto set the direction of the frame drawn on the wall

Shi et al. [20] showed how to estimate the camera pose fromrtfjection of an
orthogonal corner and the known focal length. We followtipedbcedure to estimate
the pitch @, the roll ¢ of the camera and the yaw of the room, which in our
framework define the camera pose. Notice that the focal teisgtvailable from the
estimated triplet of orthogonal vanishing points.

The method by Shi et al. [20] also recovers the 3D directidriselines forming
the corner. However, we still need to determine the 3D pmsibf the corner, which
can lie anywhere on the line defined by the camera center andottmer position
on the image plane, as illustrated in Fig. 15. Since we cadetdrmine absolute
positions and sizes from a single image, we arbitrarily fo@sithe corner on the
line such that the distance between the corner and the cametar is 10 units.

This still leaves the room dimensiofis;,w;, | ) as free parameters. Since abso-
lute sizes cannot be used when reconstructing from a singlge, we set the room
height such that the ratio between the height of the camena fine floorh, andh,
takes plausible values (Fig. 15). Specifically, we sampitoumnly from the interval
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Fig. 15 Finding the position of a 3D room corner from an image cornerfi§¥ecast a ray between
the corner in the image and the camera center. We then posié@Dthoom corner along this line.
Different positions generate different room boxes, as ilatstt by the two dashed examples above.
Once the 3D position is chosen, we set the room hédiglsuch that the ratio between the height
of the camera from the flodr; andh; falls in the range of plausible values (see text). Further, we
have to enforce that the room box is big enough to containadheeca

[Uch — 20¢h, Heh + 20¢h], with step%. For each different height, we set andl,
such that‘#r' = U2 andr'T'r = Wr2, and if the room box is not big enough to contain
the camera, we expand it. We then briefly sample over room bdxamera param-
eters by alternating Diffusion moves 1 and 2, and keep thekawith the highest
posterior.

3.4 Exchanging information among threads

At the end of the inference process, each thread outputathpls with the highest
posterior. In most cases, we found that some objects arelfonly by some of the

threads, as illustrated in Fig. 16. One thread did not findpibeure (a), while the

other did not find the nightstand (b). While a longer runnimgeticould potentially

allow each thread to find all objects, we propose insteadttthteads exchange
objects at the end of the inference (c).

Since object position and size is defined relatively to thamrpwe need an ex-
changing mechanism taking into account that differentatisehave different esti-
mates of the room box. Further, the camera parameters foueddh thread are po-
tentially different. Hence, we exchange an object betwesuace thread and a des-
tination thread by enforcing that the projection of the obja the source matches
as closely as possible the projection of the object in thér®on (Fig. 17).

At the end of inference, we add to the best sample found byeadthall the
objects found by the other threads, one at a time, and keeprihehat provides
the best posterior. We repeat thds= 10 times, or until there is no improvement
in the posterior. While less greedy methods are possible aghproach works well
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Fig. 16 The result €) of exchanging objects between the samples found by two diffehreads
(aandb).

in practice. The complete procedure for exchanging obgetsngN threads is as
follows:

1. For each threaid save inei0 the best sample found by thread
2. For eactg?, and fork =1,...,K

a. Setdk = 651 Compute the posterigit of 6¥. Get all the objects found by
other thread® = U’j\l:loj with j # i, whereOj = (0j1,...,0jn) is the list of
. . O
objects in67.
i
b. for each objecby, in O, createei"-"" by addingoy, to Gi", and compute the
posteriorp". Setg .= 6 such thap}" = max pEw. _
c. if the posterior oBX .. is larger thatpk, set@k = 6K .. Otherwise, stop and
returngX = g«

3. ReturngX with the largest posterior.

4 Results

We start by evaluating the performances of the various corapts of our algorithm
in terms of the error on the room layout estimation [8, 15, #8jich is a standard
measure in this field. This error compares the projectiomefestimated room box
against the ground truth, where each pixel was labeled ditapto the room face
it belongs to (ceiling, floor, left, middle and right wall)y romputing the ratio of
misclassified pixels.

In Table 1, we evaluate the impact of the different compasiefbur approach
on the test portion of the Hedau dataset [8], consisting @f d@lor images. In
the left column we show the contribution of the priors in tloersario where the
likelihood function uses edges and orientation maps, agi2@12 CVPR paper [4].
We see that the room prior reduces the layout error, and saais pn objects. This
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(f) (8 (h) (1)

Fig. 17 Exchanging furniture objects (top row) and frames (bottom)rbetween two samples.
Consider adding the object im)(to (b): the camera parameters and the room boxes are different,
and this is a problem since object coordinates are relatitieetooom reference frame. We address
this by making sure that the projection of the transferred alfgcmatches that of the original
one @). First, we use the original camera to project the object cesrtiet touch the floor, shown
in black in ). The star indicates the projection of the center of the aljjemor”. We then cast a
ray between the destination camera and the star, and intersdth the floor of the destination
room. This gives us the object “floor” center in the coordirgtstem defined by the destination
room box. The transferred object will be aligned with the waif the destination room, denoted
by the arrows ind). We determine the object width and length by intersectingatimews with
the dashed linesd}, which might not be aligned with the destination walls duehte differing
camera parameters. The object height is found by projectingdh®ers on the top of the object
under the original camera); For each cornet, we consider ray; through its projection and the
destination camera, and ray orthogonal to the room floor and through the correspondingesor
of the object on the floor. The 3D position ©fn the destination room is given by the point gn
closest tory. The 3D length of the vertical dashed lines determines thehbeigthe transferred
object. This length might not be the same for all four lines, andsetethe height of the object
by averaging them. The final transferred object is showre)nThe second row illustrates the
equivalent procedure for frames, where we consider the profeof the frame’s corners on the
closest wall

suggests that adding realistic objects in the room drivegtference towards better
spatial configurations.

We then evaluate the benefits of the different componentsedikelihood, con-
sidering three cases: 1) we do not allow any object in the r@mwe allow objects
in the scene, and 3) we allow exchanging information amoreptts. Interestingly,
exchanging objects allows choosing a better room box, simme objects provide
more evidence on the correct room layout. There is no impneve when only
edges are used, and we believe this happens because thiteobkkls not robust
enough in this case. Qualitative examples of these impremesrare shown in Fig.
18.
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Fig. 18 Effects of the individual components of our model. Using onlgesiwe get a poor esti-
mate of the room box, due to the edge detector missing the walkgdgeéBy adding orientation
maps to the likelihoodh), where we draw in green and blue the pixels assigned to thertivog

onal vertical surfaces and in red the horizontal pixels, weiak# better room boxcj. Also adding
geometric context helps. Irl), the algorithm is confused by several mistakes made in estimating
the orientation maps, but geometric contejthelps the reconstruction procesg (n (e), we used

red for pixels labeled as floor, yellow for left wall, greem foiddle wall, and gray for objects. Last,
using priors on object 3D position and size avoids proposingctdjeith unrealistic size, which
would otherwise often “latch” to image featuresk)

Table 2 shows that our method is comparable to the statkeséitt on the Hedau
dataset, and also report results on the UCB dataset [248jstorg of 340 black and
white images. When comparing with state-of-the-art, we i@m®ur full algorithm,
including all the likelihood components, and with the objechange enabled.

Then, we evaluate on object recognition. We ground truthediCB [24] and
Hedau dataset [8] by manually identifying the seven objledses we experimented
with, not considering objects occupying less than 1% of mhage. To evaluate de-
tection, we project the 3D object hypothesized by our modéb ehe image, and
compare this with the ground truth object position. If theeisection of the two
areas is more than 50% of their union, we consider it a codetgction. We first
measure how many objects we correctly identified for eactheftivo main cat-
egories (furniture and frames), even if there is confusidthiv the subcategories
(e.g. when we label a table as a couch, or a window as a doorproVide preci-
sion and recall scores based on this criterion. Second, vesune the accuracy we
achieved within each of the two categories, as the percerifgbjects that were
assigned to the correct subcategory.
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We report in Table 3 that using object priors greatly impsopeecision and re-
call, for both furniture and frames. When we do not use priobgects are not la-
beled (e.g., we do not know whether a furniture object is acbhaar a bed), and
subcategory accuracy cannot be evaluated. Table 4 showgdbmetric context
improves all recognition scores, except for frame subaateglassification on the
Hedau dataset. In general, performances are more moddst &OB dataset, and
this includes also the room layout error. This black and evtidtaset is in fact more
challenging, as several images are extremely blurry. We radsice that in general
geometric context only introduces small improvements enghbcategory classifi-
cation, if we exclude furniture on the UCB dataset. This isause adding a new
feature allows to obtain more accurate object fits, but thedén” of classification
is still entirely on the prior on size and position. We pokéatthaving different geo-
metric models for object classes, such as tables with legswarhes with backrests,
as well as class-dependent appearance models, would ieftrig\score.

The effects of exchanging objects among threads are alailaable 5. There
is a trend showing that exchanging objects achieves bettatiat similar or slightly
lower levels of precision. This is because adding objecsfother threads allows
to find many more objects, at the cost of a few additional rkesaVariations in
subcategory classification are mostly negligible. Last,re@ort confusion matri-
ces for both furniture and frames on the Hedau dataset. Wedursider our full
approach, including edges, orientation maps, geometritegqy priors and object
exchanging. We see that we recognize more objects in céegbat are better ap-
proximated by a single block, such as beds and cabinetorRerfices decrease for
concave objects like table, that are not well approximated lsonvex box. Also,
there is more confusion between object categories sinmlaizie, such as couches
and tables, or windows and picture frames.

Qualitative results are available in Fig. 19, where we shwsicene reconstruc-
tions provided by the full algorithm. The most typical fais are shown in Fig.
20.

Table1 Analysis of the components of our approach based on room layaut evaluated on the
Hedau test set [8]

Edges + OM| Edges Edges+ OM Edges+ OM + GC
No Prior 204% No objects 24% 21.3% 21.8%
Room prior 197% Objects 207% 178% 17.2%

Room + obj prior  17.8% Exchange objects 12% 146% 13.6%
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Table2 Comparison with state-of-the-art on room layout error

Dataset Hedau [8] Lee [15] Schwing[19] Our full approach

Hedau[8] 212%  162% 12.8% 136%
UCB [24] NA NA NA 14.2%

Table 3 Benefits of object priors evaluated on UCB and Hedau datasd®s.and S denote Preci-
sion, Recall and Subcategory Accuracy

UCB [24] P R S |Hedau 8] P R S
Furn no prior 19% 104% NA 27.1% 92% NA
Furn prior 31.0% 20.1%  38.0% 325%  20.3%  50.0%

Frames no prior 28% 140% NA 23.1% 195% 612%
Frames prior  27.2%  19.7%  60.0% 36.1% 27.5%  62.6%

Table 4 Benefits of geometric context evaluated on UCB and Hedau datase

UCB [24] P R S |Hedau 8] P R S

Furn no gc 310% 201%  380% 325% 203% 500%
Furn gc 337%  27.7%  50.1% 50.0%  242%  51.6%
Frames no gc 22%  197%  600% 361% 275%  62.6%
Frames gc 282%  243%  60.8% 384%  28.3% 61.2%

Table5 Effects of exchanging objects among threads on UCB and Healagets

UCB [24] P R S |Hedau [8] P R s
Funnoswap 337% 27.7%  50.1% 500%  242%  51.6%
Furn swap 3D% 297%  50.0% 535% 285%  513%

Framesnoswap 23%  243%  60.8% 384% 283% 612%
Framesswap 284%  37.3%  59.8% 375% 355%  66.0%

Table 6 Confusion matrices on Hedau test set [8]

|Bed Cabinet Couch Taljle |Door Picture Window
Bed | 14 1 7 1| Door | 7 0 7
Cabinet 1 12 2 2 | Picture| 0 29 13
Couch| 6 1 7 5 |Window| 8 5 28
Table | 4 3 4 6
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Fig. 19 Scene reconstructions provided by our full approach. We shewaom box in red, furni-
ture in blue and frames in green

5 Conclusions

Our top-down Bayesian approach for understanding indoenesx is competitive
with state-of-the-art approaches on the task of recovetisgjoom box. Interest-
ingly, priors on 3D geometry both improved object recogmitscores, and provided
better room box estimates. We believe this is an intereditiaiing towards provid-

ing top-down scene interpretations that are globally <iast in terms of geometry
and semantics. Another strength of this method is that it cha¢ commit to partial

configurations, and can recover from initial errors, onengxa being the improve-
ments on the initial estimate of the room box.

We posit that our method will prove more powerful as it ineggs more sophisti-
cated object models, including non convex-approximatguth as tables with legs.
In fact, more detailed geometry should help distinguiskvieen classes that are sim-
ilar in position and size. Also, recent work by Hedau et ab] [§howed that scene
interpretation is enhanced by more accurate geometric Isioslech as blocks with
backrests. More sophisticated models introduce additiomaplex constraints on
the structure of objects (for example, chairs with four syeinio legs), which our
Bayesian framework could accommodate relatively easilyttfer, the Bayesian
formulation also allows integrating additional image @nde that would make the
model more robust. For example, visual inspection of theltesuggested that
adding category dependent appearance models is a prordisgngion of research,
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Fig. 20 Some typical failures. Due to clutter we often hallucinatesoty 6-d). For example, in
(b) we propose a bed whose edges “latch” to those of the carpetpahe top of the armchairs.
However, in this case our approach still provides a reasongipleogimation of the space occu-
pancy of the scene. In other situatiorsf), we hallucinate boxes in the gap among objects, thus
providing a wrong estimate of the occupied space, or completedg objectsd-h). This mostly
happens when faint edges are missed by the edge detector, shosasftthe bed ing). Further,
we often confuse object categories similar in size and position.ekample, the table in)(is
wrongly labeled as a bed, and the opposite happen3.ifitfe wall in ) is labeled as a cabinet,
and we sometimes confuse an object that is directly facing thereafoea frame ). We also
show some cases where the algorithm estimated the wrong roonmbo (n (m), this is caused
by the edge detector missing the edge between the room wallharwiling completely. Other
more catastrophic failures are due to bad initial estimatessof@imera, from which the algorithm
could not recoverd-p)

as well as enforcing that projections of objects are uniforrterms of color and
texture.
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