
Top-down Bayesian inference of indoor scenes

Luca Del Pero and Kobus Barnard

Abstract The task of inferring the 3D layout of indoor scenes from images has
seen many recent advancements. Understanding the basic 3D geometry of these en-
vironments is important for higher level applications, such as object recognition and
robot navigation. In this chapter, we present our Bayesian generative model for un-
derstanding indoor environments. We model the 3D geometry of a room and the
objects within it with non overlapping 3D boxes, which provide approximations for
both the room boundary and objects like tables and beds. We separately model the
imaging process (camera parameters), and an image likelihood, thus providing a
complete, generative statistical model for image data. A key feature of this work is
using prior information and constraints on the 3D geometry of the scene elements,
which addresses ambiguities in the imaging process in a top-down fashion. We also
describe and relate this work to other state-of-the-art approaches, and discuss tech-
niques that have become standard in this field, such as estimating the camera pose
from a triplet of vanishing points.

1 Introduction

There has been much recent interest in estimating the 3D layout of indoor scenes
from monocular images [2, 8, 9, 10, 14, 15, 19, 23], as this provides crucial geo-
metric context for higher level tasks, such as object recognition and prediction of
human activities. Consider for example Fig. 1. From just a single image, human
observers can infer the 3D structure of the room, even when many cues are hidden.
For example, we can estimate the boundary between the floor and the walls, even
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Fig. 1 Inferring the 3D layout
of a room from an image is
challenging due to occlusions
and clutter. Here, the bound-
ary between floor and walls
is occluded by the furniture.
We show on the right the
correct position of the 3D box
approximating the room

if it is mostly occluded by furniture. This kind of geometricunderstanding informs
interaction with the environment. For example, one could infer that the bed provides
a surface for sitting, or that a possible path to the couch goes around the bed.

A number of computational methods for recovering the 3D scene layout have
been recently developed based on modeling rooms with simplegeometric primi-
tives, such as sets of orthogonal surfaces [14], or 3D boxes [8, 15]. Despite the
coarse geometric approximation, these approaches have enabled several interesting
applications. For example, Gupta et al. [7] used extracted 3D information to identify
locations where people can sit or lie, while Hedau et al. [9] showed how knowledge
of the 3D environment helps detecting pieces of furniture, such as beds. Other no-
table applications include inserting realistic computer graphics objects into indoor
images [13], and robot navigation [21].

This chapter extends our previous work on indoor scene understanding [3, 4].
Specifically, we provide additional details on the model andthe inference discussed
in these papers. New contributions include making the inference multi-threaded by
allowing threads to exchange information (§3.4), a new method to make the infer-
ence more robust (§3.1.4), and a comprehensive evaluation of all the techniques
proposed (§4).

1.1 Background

In the domain of inferring 3D geometry from indoor images, itis common to
parametrize the scene layout as a 3D box [8, 9, 10, 15, 19, 23].This is often re-
ferred to asroom box, as it coarsely models the space of a room as if it were empty.
An example is shown in Fig. 1, where the estimated room box is shown on the right.
Inferring the room box from an image entails determining the3D position and ori-
entation of the floor, ceiling and walls that typically definean indoor environment.
This process presents two main challenges. First, recovering the 3D box requires in-
ferring the perspective transformation that generated theimage (camera estimation).
Second, clutter and occlusions are a major source of confusion, since the room box
boundaries are often mostly hidden (Fig. 1).

Estimating the camera in indoor scenes has been tackled by using a strong
model [8, 9, 10, 15, 19, 23], specifically the Manhattan worldassumption [1]. This
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states that most surfaces in the scene are aligned with threeprincipal orthogonal di-
rections, which can be estimated by detecting a triplet of orthogonal vanishing points
on the image plane [17]. The parameters of the perspective projection can then be
recovered analytically from the position of the vanishing points, and this is a well
understood problem [25]. In Manhattan world indoor scenes,the three orthogonal
directions are invariably those of the room box.

Addressing occlusions and clutter requires reasoning about the objects in the
room. Hedau et al. [8] detect clutter in 2D with an appearancebased classifier.
More recently, Lee et al. [14] showed the benefits of reasoning about objects in 3D.
Specifically, they proposed modeling objects as 3D boxes, which provide reason-
able bounding approximations of objects typically found inrooms, such as beds and
tables, and further exploit the Manhattan assumption by constraining these boxes to
be aligned with the room box. Their results showed that jointinference of the room
and the 3D objects, which addresses ambiguities caused by clutter and occlusions in
a top-down fashion, improves on estimating the room box. Ourapproach is related
to Lee’s work [14], but we advocate an even more top-down approach with a more
unified representation.

1.2 Overview of our approach

Similarly to Lee et al. [14], our goal is to simultaneously estimate the camera, detect
and localize in 3D the floor, ceiling, and walls comprising the room “box,” and
determine the position of the objects in the room. However, instead of using an
object box only to explain occlusions, we want to identify it(e.g., a couch or a
bed) as well. This simultaneously achieves a fuller understanding of the scene, and
allows object knowledge to help fit the overall geometry. Forexample, knowing that
a specific block is approximating a bed rather than, say, a wardrobe, adds constraints
on the box’s 3D size and position, as a bed is typically much lower. Conversely, the
size and position of a 3D block provide strong cues on the identity of the object.

Our goal is to provide a comprehensive parsing of the scene that is globally con-
sistent in 3D, both geometrically and semantically, which is on the lines of the work
of Hoiem et al. [12]. This introduces complex constraints, which make the inference
process challenging. Examples of constraints include preventing objects from over-
lapping in 3D, and enforcing that each object is contained inthe room box. Previous
work [8, 15, 19] relied on the framework of structured prediction for inferring in-
door scene models, where inference and modeling are strongly coupled. This makes
it harder to adapt the method to handle more complex sources of information, such
as conditioning the position and size of objects on their identity.

Bayesian inference is a natural way to handle these complexities, as it allows
to separate the modeling and the inference. Specifically, wepropose a Bayesian
generative model for images of indoor scenes, where we separately model the 3D
geometry (room box and objects), the imaging process (camera parameters), and an
image likelihood. We assume that the image features are generated statistically from
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the projected 3D scene under the camera parameters. We impose further structure by
introducing the notion of an object type. The Bayesian framework naturally allows
using prior information of the world, which in our case are prior distributions on a
box’s 3D size and position conditioned on its type and on the room box. For exam-
ple, beds are typically against a wall, while tables are likely found in the center of
the room. In this work, we allow four different types of object boxes, approximating
beds, cabinets, couches and tables. We also introduce the notion of frames, which
are thin boxes “anchored” to a wall, to approximate objects such as doors. We use
three types of frames: doors, picture frames, and windows.

Bayesian inference allows us to jointly infer all the elements in our model, with-
out having to commit to partial solutions. For example, previous work [8, 9, 10, 15,
19, 23] rely on initial estimates of the camera parameters, and they cannot recover
from mistakes in this step. Similarly, both Hedau et al. [8] and Gupta et al. [7] use an
initial estimate of the room box for identifying beds and predicting human activities
in the room, respectively. Again, errors in the estimate of the room box cannot be
recovered from. In principle, our approach does not have this problem.

In what follows, we detail with our model for the 3D scene geometry and the
camera (§2). We then develop priors that distinguish among object boxes based on
their position and size (§2.1), and then detail the imaging model (§2.2), includ-
ing an analysis of the standard image features used in this field. We then describe
the Markov chain Monte Carlo sampling method that we use for inference (§3).
Important aspects include how to handle constraints duringsampling, how to use
data-driven methods for efficient sampling, and how to do inference with multiple
threads. Finally, we provide extensive evaluation of our approach on two standard
datasets (§4).

2 A Bayesian generative model for indoor scenes

We use a Bayesian generative model, where we assume that images are generated
by the projection of the 3D scene. We partition model parameters,θ , into scene
parameters,s, encoding the 3D geometry, and camera parameters,c, modeling the
perspective transformation

θ = (s,c) . (1)

We define the posterior distribution as

p(θ |D) ∝ p(D|θ)p(θ) , (2)

whereD are features detected on the image plane andp(θ ) is the prior distribution
over model parameters.

Scene parameters include the room box and objects in it

s= (r,o1, ...,on) , (3)
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where the number of objectsn and their type are not known a priori. We model
the room as a right-angled parallelepiped whose floor is parallel to thex-z plane of
the world reference frame. It is defined by its 3D center, width, height, length, and
rotation angle,γr , around an axis parallel to the worldy-axis and through the room
center (yaw):

r = (xr ,yr ,zr ,wr ,hr , lr ,γr) . (4)

Objects in the room are similarly modeled by blocks, but include an object cat-
egory,ti , (e.g., bed, table, door). A block on the floor could approximate a convex
object such as a bed, or provide a bounding box for a more complex object, such
as a table. Windows, doors and pictures are approximated with thin blocks (frames)
attached to a wall. All objects share the same orientationγr of the room block, fol-
lowing the Manhattan world assumption. Objects must be entirely inside the room
box, and they can not intersect each other.

Objects coordinates are relative to the coordinate frame defined by the room cen-
ter, and whose axes are aligned with the room walls, which we call “room coor-
dinates”. We define a coordinate transformation functionrcoord(x,y,z) = (xr ,yr ,zr)
for later use, to transform a point defined relatively to the world coordinate system
(x,y,z) into room coordinates. Since the worldx− z plane is parallel to the room
floor, rcoord simply applies a translation and a rotation around they−axis defined
by the room yawγr . An advantage of storing objects in room coordinates, is that
it allows for efficient computation of intersections among objects, and between an
object and the room box.

Each object is “anchored” to a room surface, whose index is stored as a discrete
variable(si). Furniture objects lie on the floor (si = 4), implying that, given the
object height, they coordinate of the object center is not a free parameter. Specif-
ically, yi = −(yr/2)+ (hi/2.0), where−(yr/2) is the position of the floor in room
coordinates. Similarly, frames are anchored to one of the walls, which analogously
constrains their parameters (see Fig. 2). To summarize the object parameters,

oi = (ti ,si ,xi ,yi ,zi ,wi ,hi , l i) . (5)

The imaging process is modeled with a standard perspective camera

c= ( f ,φ ,ψ) , (6)

where f , φ andψ are, respectively, the focal length, the pitch, and the rollangle.
Since absolute positions cannot be determined when reconstructing from single im-
ages, we arbitrarily position the camera at the origin of theworld coordinate system,
pointing down the z-axis. The extrinsic camera rotations, specified by three degrees
of freedom, are fully determined byφ , ψ and the yawγr of the room (see Fig. 3).
Pitch and roll are constrained within ranges of plausible values for indoor scenes
(φ ∈ [−60◦,60◦]), ψ ∈ [−10◦,10◦] ), while the focal length has to be positive. We
further assume unary aspect ratio, no skew, and that the principal point coincides
with the image center.
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Fig. 2 The coordinates of the objects are stored in a coordinate framerelative to the center of the
room box, and whose axes are aligned with the room walls. Here, two frames are “anchored” to a
wall of the room box, seen from above. Walls are numbered from 0 to 3, and this index is stored
in variablesi , which imposes constraints on the parameters in Eq. 5. For example, for the frame on
the right, we havesi = 1 andxi = (wr/2). Further, since frames are approximated with thin blocks,
we setwi = ε, with ε = 0.01 units. For the frame at the bottom,si = 2, zi = (lr/2), andl i = ε

2.1 Model priors

Priors on scene elements improve global scene understanding by helping resolve
ambiguity during inference, and also support identifying objects based on geometry
cues, such as size and location, alone. Previous work has used blocks in the scene
to explain occlusions [15] and to infer what regions of the 3Dspace are occupied
by generic objects [10]. In this work, we assign a semantic label to our blocks (e.g.
couch, door, etc.), with each label corresponding to specific prior probabilities on
object size and position in 3D. Because we are reconstructing from a single image,
we have one overall scale ambiguity, and thus priors on object “size” and position
are defined relatively to the room box.

As an example of information captured by the priors, wardrobe cabinets are tall
and narrow and typically against a wall, while tables are usually shorter, wider, and
in the middle of the room. Similarly, a door is quite tall and touches the floor, while
picture frames are much shorter and are typically found in the higher half of a wall.

Assuming independence, the overall prior for the model parameters is given by

p(θ) = π(r)π(c)
n

∏
i=1

π(oi) , (7)

whereπ(r) is the prior on the room box,π(c) is the prior on camera parameters, and
π(oi) is the prior for one ofn objects in the room. We now describe each of these
components and how we set their parameters from training data.
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Fig. 3 Camera parameters. The extrinsic parameters define the position and orientation of the
camera with respect to the world reference frame. Since absolutesizes and position cannot be de-
termined, we arbitrarily position the camera at the origin of the world coordinate system, pointing
down the negative z-axis. The room box can rotate around its y-axis, thus determining the yaw of
the camera (left column). Two more angles, a rotation around the camera z-axis (roll, mid column)
and a rotation about the x-axis (pitch, right column) completethe camera orientation specification

2.1.1 Prior on room box

The room box is defined in terms of the center position in 3D(xr ,yr ,zr) and its
width, height, and length(wr ,hr , lr). First, we define a prior over the ratio between
the long dimension to the short dimension, with

rr1 =
max(wr , lr)
min(wr , lr)

. (8)

We use this formulation since we do not know in advance which dimension is the
largest. We also put a prior on the ratio of the long dimensionto the height

rr2 =
max(wr , lr)

hr
. (9)

The prior distributions over these two quantities are set tobe relatively non infor-
mative, but help reduce the time spent in regions of the sampling space with low
probability, especially during the early stages of the inference process. We set both
parameters to be normal distributions, independent from each other

π(r) = N (rr1,µr1,σr1)N (rr2,µr2,σr2) . (10)
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Fig. 4 Distinguishing objecs using their size. The ratio between the height of an object and the
largest between its width and length varies considerably between beds and cabinets. In this exam-
ple, also the ratio between width and length is quite discriminative

2.1.2 Prior on camera parameters

We found that the camera height from the floorch is a particularly indicative prop-
erty in indoor scenes, as small variations in this quantity result in major changes in
the image plane. Intuitively, pictures of indoor images arerarely taken by putting
the camera close to the floor or to the ceiling. Since we cannotuse absolute sizes,
the prior is defined on the ratiorch between camera height and room height

π(c) = N (rch,µch,σch) . (11)

2.1.3 Prior on objects.

Several categories of furniture and frames have a very distinctive size (Fig. 4). Here
we introduce a general formulation for a prior for a specific object of categoryti = τ
that exploits this intuition. Given an objectoi defined in terms of its size (wi ,hi , l i),
and a room with dimensions (wr ,hr , lr ), we use the following quantities

• ratio between the object height and its largest other dimension r i1= hi/max(wi , l i)
(Fig. 4). This helps distinguish between categories that are taller than they are
wide, such as wardrobes, and short and wide objects, such as beds.

• ratio between the object long and short dimensions,r i2 = max(wi , l i)/min(wi , l i)
(Fig. 4). Again, we use this formulation since we do not know in advance which
dimension is the largest. This quantity discriminates between furniture with a
roughly square base, and furniture with a rectangular base.This component is
not used for frames, since one of their width or length is always negligible.
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Fig. 5 Learning the ratio between room height and object height. This quantity is very informa-
tive, and we estimate its statistics from training images. We use theratio between the two arrows,
provided that the object is against or close to a wall. While ratios of lengths of collinear seg-
ments are normally not preserved by projective transformations (only affine), in this domain the
vanishing point for vertical segments is usually at infinity, andthis method provides a reasonable
approximation

• ratio between room height and object heightr i3 = hr/hi . Intuitively, the height
of a bed is quite small with respect to the room height, whereas the height of a
wardrobe or of a door is quite large (Fig. 5).

• whether the object is against a wall or not. This is based on the intuition that
some objects tend to be against a wall (e.g. beds) more than others (tables). For
frames, we use whether or not the frame touches the floor. For example, doors
touch the floor, while windows typically do not.

The first two ratios carry information on the object structure, and do not depend
on the scene, while the last two encode information on the size and position of an
object relatively to the room box. The first three quantitiesfollow a normal distribu-
tion

π j(oi |ti = τ) = N (r i j ; µτ j ,στ j) , (12)

for j = 1,2,3. Each categoryτ has different(µτ j ,στ j), and for objectoi we use the
prior distribution for the category it belongs to, denoted by ti . Notice that from now
on we will use the shorthandπ j(oi) for π j(oi |ti = τ). Last,di follows a Bernoulli
distributionπ(di). Given an objectoi , we combine the components of its prior prob-
ability as follows

π(oi) = π(di)
3

∏
j=1

π j(oi) . (13)

2.1.4 Setting prior probabilities from data

As mentioned above, the first two components of the object prior do not depend
on the scene. For each categoryτ, we set(µτ1,στ1,µτ2,στ2) using fifty random
examples selected from online furniture and appliances catalogs. We recorded their
dimensions, provided in the text description, and the meansand variances of the
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relevant ratios. We used the Ikea catalog1 for beds, couches, cabinets and tables,
and the Home Depot catalog2 for windows, doors and picture frames.

Setting the parameters for the remaining two priors is more challenging, since
they relate the size of an object category to that of the room,and this information is
not available in furniture catalogs. In this case, we use image data, and set(µc3,σc3)
as explained in Fig. 5. We also use images to setπ(d), which we approximate as the
frequency at which an instance of an object of categoryτ is against a wall, or floor
if it is a frame. For training, we used the images in the training split of the Hedau
dataset [8], omitting images where we could not tell whethera piece of furniture
was against the wall or not.

Last, we set the parameters of the priors on camera and room box from training
images. We manually fit an empty room box and the camera to images in the Hedau
training set, from which we set the parameters [4].

2.2 The image model

Our image model is similar to the one used by Schlecht and Barnard [18]. Specifi-
cally, we assume that image featuresD = ( f1, ..., fs) are generated by the projection
of the 3D scene under the given camera. We use three feature types that proved use-
ful in this domain, specifically edges [3, 4, 14], orientation surfaces [14, 15], and
geometric context [8, 15].

2.2.1 Image edges

We assume image edges to be generated by the blocks in the scene. We measure
the quality of a fit by comparing the set of edgesEd detected on the image plane
to the set of edgesEθ generated by projecting the model. As in Schecht et al. [18],
we define a likelihood functionp(Ed|Eθ ), which we specify using the following
intuitions:

• An edge pointed j ∈ Ed detected in the image plane should be matched to an
edge pointeθk ∈ Eθ generated by the model. If the match is good the two points
should be very close to each other, and the difference in orientation between the
two edges should be minimal. We usep(ed j|eθk) =N (d jk,0,σd)N (φ jk,0,σφ ),
whered jk is the distance between the points, andφ jk the difference in orientation
between the edges.

• We penalize a detected edge point that is not matched to any model edge (noise).
We definepn as the probability of such an event occurring.

• We explain points inEθ not matched to any point inEd as missing detections,
and define probabilitiesphmiss and psmiss. The former is used for “hard” edges

1 http://www.ikea.com/us/en/catalog/categories/departments/bedroom/
2 http://www6.homedepot.com/cyber-monday/index.html
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arising from occlusion boundaries, such as the edges that belong to the silhouette
of an object. The latter is used for “soft” edges that are lesslikely to be found by
the edge detector, such as the room edges and non-silhouetteedges from objects.
It is less likely that a detector will miss a “hard” edge compared with a “soft”
edge. Note that one of the advantages of using a full 3D model,is that we can
determine whether hypothesized edge points inEθ are hard or soft.

We then have

p̃(Ed|Eθ ) = pNn
n pNsmiss

smisspNhmiss
hmiss ∏

( j,k)∈matches

p(ed j|eθk) , (14)

whereNn is the number of edge points labeled as noise, andNsmiss (Nhmiss) the
number of missed soft (hard) edges. We match points in a greedy fashion by finding
the closest pointeθ to a data edgeed along the edge gradient, provided that this
distance is smaller than 40 pixels, and the difference in orientation is less than 0.7
radian. We further adjust this likelihood function to make it less sensitive to the
number of edge points, which we found makes it more stable over a larger variety
of input data. Specifically, we use

p(Ed|Eθ )≈ p̃(Ed|Eθ )
(Nhmiss+Nsmiss+Nn+Nmatches)

−1
. (15)

2.2.2 Orientation surfaces

Based on the Manhattan world assumption, most pixels in the scene are generated
by a plane aligned with one of three orthogonal directions, and we can estimate
which one using the approach by Lee et al. [14]. We compare thepixel orientation
Od detected from the image plane with the orientation surfacesOθ generated by
projecting our model. We approximatep(Od|Oθ ) by the ratio between the number of
pixels where the orientation detected on the image plane agrees with the orientation
predicted by the model, and the total number of pixels.

2.2.3 Geometric context

Following Hedau et al. [8], we also consider geometric context labels, which esti-
mate the geometric class of each pixel, choosing between object, floor, ceiling, left,
middle and right wall. This is done using a probabilistic classifier trained on a mix-
ture of color and oriented gradient features [11]. We use thecode and the pre-trained
classifier available online [11]. For each pixelpk, this provides a probability distri-
butiongck = [gck1, ...,gck6] over the six classes. Given the labell predicted by the
model for pixelpk, we definep(gck|pk) = p(gck|pk = l) = gcl , and

p(GC|θ) =
∑pk∈I p(gck|pk)

size(I)
, (16)
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where we average the contributions of all image pixels. Since the available classifier
was trained against data where only furniture was labeled asobjects, and not frames,
we consider frames as part of the wall they are attached to, and not as objects when
we evaluate on geometric context.

2.2.4 Combining the three features

Assuming independence among the features, we define our likelihood function

p(D|θ) = p(Ed|Em)p(Od|Om)
α p(GC|θ)β , (17)

whereα andβ weigh the importance of the orientation and geometric context like-
lihoods, relative to the edge likelihood. We setβ = 12 andα = 6 by running our
algorithm on the training portion of the Hedau dataset [8]. Here we used a coarse
grid search overα andβ , with a step of 2, using the room box layout error (defined
in §4) as an objective function.

Later, in the results (Fig. 18) we illustrate how these threefeatures work together.
Errors in the edge detection process can be fixed using orientation surfaces and ge-
ometric context, and vice versa. Using edges also helps improving the camera fit
when starting from a wrong estimate of the vanishing points,which are detected at
the beginning and used to initialize the camera parameters.In fact, since the algo-
rithms for computing orientation maps and geometric context depend on the initial
vanishing point estimation, this feature is compromised bythis initial error, whereas
edges are not.

3 Inference

We use Markov chain Monte Carlo (MCMC) sampling to search theparameter
space, defined by camera and room box parameters, the unknownnumber of ob-
jects, their type, and the parameters of each object. To change the discrete structure
of the model, which includes the unknown number of objects, and the type of each
of them, we use reversible jump Metropolis-Hastings (MH) [5, 6]. To change the
continuous parameters, which comprise the room box, the camera, and size and po-
sition of each object, we use Hamiltonian dynamics sampling[16]. The proposals
from these two samplings strategies are often referred to as“jump” and “diffusion”
moves [22].

The 3D structure of the model introduces several constraints and dependencies
among parameters, which must be carefully taken into account during inference.
Specifically, objects cannot overlap in 3D, and they have to be entirely inside the
room box. Further, the camera must be inside the room box, andnot within the
volume occupied by any of the objects. Enforcing these constraints during inference
can introduce several ambiguities, as illustrated in Fig. 6(g), using a birdview of
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Fig. 6 Sampling over subsets of parameters handles containment constraints (top two rows) and
avoids ambiguities (bottom row). Consider sampling over the parameters of a single object at a
time. As the object expands, other objects have to shrink to avoid overlap. For example,A has to
shrink to allowB to grow (a-b), as shown also in the corresponding birdviews (d-e). Similarly,
when sampling over the room box only, objects have to shrink so that they are entirely in the room,
like objectB in (c) and (f). Instead, sampling over two objects at the same time could result in
conflicts such as in (g), where bothA andB are contending the same 3D space. Sampling over the
room box and an object jointly would create similar conflicts (h)

the room box. Consider sampling over objects A and B simultaneously. This could
result in a conflict where object B tries to expand towards theleft, and A towards
the right, as illustrated by the arrows. A similar situationcan happen when the room
box is trying to shrink and object B is trying to expand (h).

To avoid these ambiguities, we use three different types of continuous moves
over subsets of the scene parameters, and define rules for adapting the model so that
no constraint is violated. In the first one, we sample over theparameters of a single
object, and we enforce constraints by shrinking other objects in case of overlap, and
expanding the room box in case it is not big enough to contain the object (Fig. 6,
a-b). The second move samples over the parameters of the roombox only, and adapt
the objects to respect the constraints. As the room box becomes smaller, we shrink
objects in case they end outside the room (Fig. 6, c). Third, we jointly sample over
camera and room box parameters, by enforcing constraints asin the previous move.
Further, for all the three moves just discussed, we enforce that the camera is inside
the room box, and is not within the volume occupied by an object. These are corner
cases that occur less often, and we simply reject samples violating these constraints.
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Diffusion moves and Jump moves are alternated throughout inference. We sum-
marize the entire process here, and describe each componentin detail in the follow-
ing Sections:

1. Initialize the parameters of the camera and of the room box
2. RepeatK times

a. Generate a new sample with one of the following moves, chosen randomly
• Jump 1: add an object to the scene (furniture of frame)
• Jump 2: remove an object from the scene
• Jump 3: pick a random object, and change its type
• Diffusion 1: pick a random object and sample over its parameters
• Diffusion 2: sample over the room box parameters only
• Diffusion 3: sample over room box and camera parameters

b. Reject samples that violate the constraints on the cameraposition (camera
outside the room or inside an object).

3. Return the sample with the highest posterior

We rely on a multi-threaded strategy to efficiently explore more of the space on
modern multi-core workstations. Each thread executes the procedure above, and, at
the end, threads are allowed to exchange information, as some of the objects might
be found by a thread and missed by the others, and vice versa (§3.4). This exchang-
ing procedure is followed by additional sampling, and we output the best sample
found. In our experiments we used 20 threads, and the whole inference process
takes on average ten minutes per image.

In what follows, we first detail with the diffusion moves in Sect. §3.1, where
we develop concepts needed to better discuss the Jump moves§3.2, and how we
initialize the room box and the camera§3.3. Last, we explain how to exchange
objects among threads§3.4.

3.1 Diffusion moves

As illustrated in Fig. 6, we sample over subsets of the scene parameters and specify
rules to make the model comply with all constraints. We use Hamiltonian dynam-
ics sampling, which were used by Schlecht et al. [18] for learning the continuous
parameters of geometric models for furniture with a similarparametrization.

We use Neal’s formulation of Hamiltonian dynamics [16] to sample over phase
space, where the energy function is defined in terms of the joint distribution of the
parameters and the image datap(θ ,D)

E(θ) =−log(p(D|θ))− log(p(θ)) . (18)

We follow the dynamics using leapfrog discretization [16],and compute the deriva-
tive of the potential energy with numerical approximation,which is the current bot-
tleneck for computation.
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3.1.1 Sampling over the continuous parameters of an object (Diffusion 1)

When sampling the parameters of objectoi , we adapt the room box and the other
objects so that no constraints are violated. When we detect anoverlap with another
object, we shrink the latter, and delete it if it is completely contained inoi . We also
check whetheroi is partly outside the room. If this is the case, we expand the room
box so thatoi is entirely inside, and further adjust the position of the other objects
(§3.1.2).

To reduce the sampling time, we designed efficient ways for sampling object
parameters. For example, consider the window in Fig. 7 (a). To find the correct fit,
the window height must be stretched, and its center must be shifted downwards.
To do this efficiently, we vary the height of the window by keeping the upper edge
fixed. In this example, we would run Hamiltonian dynamics on the object heighthi .
At each leapfrog stept, a proposed change in the heightht

i = ht−1
i + δ is followed

by changing they position of the object center asyt
i = yt−1

i − δ
2 , achieving the result

in Fig. 7 (b). This technique is effective in our framework, since typically one edge
of the object is correctly “latched” to an image edge, given our proposal mechanism
from image corners discussed in§3.2.1, and we thus want to find the correct size of
the object without displacing that edge. There are four directions to sample a frame
using this strategy, and six for furniture objects, as illustrated in Fig. 7 (c), (d) and
(e). When executing move Diffusion 1 for objectoi , we iterate over all four possible
directions ifoi is a frame, six if it is a furniture object. For each direction, we use 20
leapfrog steps, and at each step we enforce the containment constraints.

3.1.2 Sampling over the continuous parameters of the room box (Diffusion 2)

When sampling the parameters of the room boxr, we adapt all the objects so that no
constraints are violated. When we detect that an object is partly outside the box, we
shrink it, and delete it if it is completely outside. As for the object parameters, we
sample along one direction of the room by keeping one edge “latched” (Fig. 7, third
row). Six sampling directions are available (fourth row), and we use 20 leapfrog
steps per direction. At each leapfrog step we enforce the containment constraint,
and we further apply a transformation to the objects in the room, to preserve their
projection on the image plane. Since room objects parameters are relative to the
room box coordinate system, changing the 3D position of the room box would not
preserve the projection of the room objects. An example is shown in Fig. 7 (g-h),
where a small change in the room center causes the object to move as well.

We address this as follows. We define the room 3D center(rx+δrx, ry+δry, rz+
δrz) at leapfrog stept, where all the parameters are relative to the world coordinate
system, and(rx, ry, rz) is the room center at leapfrog step(t −1). Let us also define
(xi ,yi ,zi) as the center of objectoi at(t−1), this time in room coordinates. For each
objectoi , we compute the position of its center at stept as(xi +δ r

rx,yi +δ r
ry,zi +δ r

rz),
where(δ r

rx,δ r
ry,δ r

rz) = rcoord(δrx,δry,δrz). The result of applying this transformation
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Fig. 7 Efficient strategies for sampling over continuous parameters. The upper edge of the window
in (a) is positioned correctly, and the correct fit for the window can be obtained efficiently by
dragging down the lower edge while keeping the upper edge fixed (b). We designed moves that
achieve this by sampling the continuous parameters of the window in 3D (see text). For a frame,
this principle can be applied to any of the edges, and this creates four possible sampling directions,
denoted by the arrows in (c). For furniture we have six alternatives, as illustrated in (d) and (e),
which is a birdview of the model. (f) is an example of the effects of this move when sampling over
the direction denoted by the arrow. The same strategy is also used when sampling over the room
box (third row), where we have six possible directions, illustrated in (j) and (k) (two of those are
shown in both, denoted by the green arrows). Since object coordinates are relative to the room box,
changes in the latter have the undesirable effect of changingthe projection of objects already in
the room. For example, we only changed the 3D center of the room box from (g) to (h), and this
“shifted” the projection of the blue block as well. By introducing a transformation that preserves
the projection of the objects in the room (see text), we obtainthe result in (i)

is shown in Fig. 7 (i), where the room box has changed, but the object block kept its
position on the image plane.
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Fig. 8 Sensible sampling with interacting boxes. Suppose sampling over the block projected over
the bed (a), along the direction denoted by the arrow (b) for N leapfrog steps. For a few steps,
the bed tries to expand, and the containment constraints forcethe block on the left to shrink (b).
Then, the bed tries to shrink (c), but we see that the left block does not return to its initial position.
The behavior in the second row is more desirable, where the left block “grows” back to its initial
location as the bed shrinks (e), but does not grow beyond that point (f). In the third row, we show
the desired behavior of the sampler when the room box is trying toexpand along the direction of
the arrow. As the room shrinks, so does the bed (g), which completely disappears when it is fully
outside the room (h). When the box starts to expand again, the bed grows back to itsinitial size (i),
but no further (l)

3.1.3 Sampling over camera and room box parameters (Diffusion 3)

We sample over camera and room box parameters jointly, for a total of 10 param-
eters. We found that sampling over the camera parameters independently typically
produces samples with a lower posterior, due to correlations with other scene pa-
rameters. For example, sampling over the focal length should drive the model to the
current perspective distortion, which provides a better alignment of the projected
model edges and the image edges. However, changing the focallength also modi-
fies the size of the projection of the 3D scene, and these two forces are conflicting.

Hence, we jointly sample over camera and room box, as this allows to account
for some of the correlations between camera and scene parameters. For this move,
we use Hamiltonian dynamics for 20 iterations. At each step,we enforce the same
constraints as in the case where we sample over the room box only.
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3.1.4 Sensible dynamics with multiple boxes

The constraints in the model give rise to an additional problem illustrated in Fig.
8. Suppose sampling over the block projected over the bed (a), along the direction
denoted by the arrow (b) forN leapfrog steps. For a few steps, the bed tries to
expand, and the containment constraints force the block on the left to shrink (b).
Then, the bed tries to shrink (c), but we see that the left block does not return to
its initial position. The behavior in the second row is more desirable, where the left
block “grows” back to its initial location as the bed shrinks(e), but does not grow
beyond that point (f). In the third row, we show a similar situation, where we show
the desired behavior of the sampler when the room box is trying to expand. As the
room shrinks, so does the bed (g), which completely disappears when it is fully
outside the room (h). When the box starts to expand again, the bed grows back to its
initial size (i), but no further (l). The procedure implementing this strategy for the
sampling of a set of continuous parameters is as follows (θin is the initial sample,
andθout is the sample afterN leapfrog steps).

1. Setθ0 = θin

2. For every stepi = 1, ...,N

a. Computeθi from θi−1 by following the Hamiltonian dynamics.
b. Whenever the posterior needs to be evaluated, compute it ona copy ofθi−1

where we apply the containment constraints. Never apply theconstraints on
eitherθi or θi−1

3. Setθout = θN

4. Apply the containment constraints onθout

This procedure implements the desired behavior illustrated in Fig. 8, by keeping
track of the initial positions and sizes of all objects in themodel, and applying the
containment constraints only when the posterior needs to beevaluated. Finally, these
constraints are applied to the last sample, which will be thestarting point for the next
sampling move.

3.2 Jump moves

One of the main challenges in the inference process is designing jump moves to
efficiently add objects to the scene. Since the sampling space is so large, naive jump
proposals, such as samples from a prior distribution, are unlikely to be accepted, and
this leads to unacceptably long running times. To face this challenge, we introduced
a data-driven strategy [22, 26] to condition the sampling onthe data, by proposing
samples from image evidence in a bottom-up fashion. Further, we exploit the Man-
hattan world assumption [1] that most surfaces in the world are aligned with one
of three orthogonal directions, as this provides strong constraints on the parameter
space.
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In Fig. 9, we illustrate how our proposal mechanism combinesthe Manhattan
world constraints and the advantages of data-driven inference. Here, we show that
intersections of line segments on the image plane, which we call image corners, typ-
ically correspond to the projection of corners that are orthogonal in the 3D world.
Using projective geometry and Manhattan orthogonality constraints, an image cor-
ner can be used to propose furniture objects (Fig. 9, f), frames (g) and room box
candidates (h), which are accepted with high probability.

To achieve this goal, we first estimate the triplet of orthogonal vanishing points
defining the Manhattan world directions [17]. This providesa good estimate of the
camera focal length and pose, which are needed to propose 3D blocks from image
corners. In what follows, we describe the procedure for estimating the vanishing
points (§3.2.1), how to detect image corners (§3.2.2), and how to use them to propose
both objects in the scene (§3.2.3) and room box candidates (§3.3).

3.2.1 Vanishing point estimation

We first detect straight edges and fit line segments to them using the straight con-
nected edge detector by Hoiem et al [11]. Then, we detect vanishing points follow-
ing the RANSAC procedure proposed by Lee et al [14]. At each step, we randomly
select three pairs of line segments and position a vanishingpoint at the intersec-
tion of each pair. We then check the orthogonality of the vanishing points and reject
triplets that are not orthogonal. We then estimate the intrinsic camera matrixK from
the Choleski decomposition of the absolute conic matrix [25], which is fully deter-
mined by the position of the three vanishing points. We reject triplets that provide a
non realistic focal length (f 6∈ [50,2000], measured in pixel).

For each valid tripletVt(v1,v2,v3), we compute the objective functionf (Vt) as
follows. First, we compute the angular distanceα(si ,vk) between each line segment
si and each vanishing pointvk (Fig. 10). A segmentsi is labeled as an outlier if
mink=1,2,3 α(si ,vk)> 0.06. If n is the total number of outliers, we have

f (Vt) =

(

n

∑
i=1

mink=1,2,3 α(si ,vk)

l i

)

/

n (19)

wheren is the number of inlier line segments in the RANSAC procedure. l i is the
length of segmentsi , and is used to assign a larger weight to long segments.

We keep the valid triplet of vanishing points minimizingf (Vt) and such that the
ratio rout between the number of outliers and the total number of segments is less
than 0.1. If no triplet satisfying these constraints is found, we increase this threshold
by 0.1 and repeat until a triplet is found. This allows for considering first only triplets
supported by a large number of segments, and, if none is available, we allow a larger
number of outliers.
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Fig. 9 Detecting vanishing points (top) to find orthogonal corners (bottom). Most surfaces in in-
door scenes are aligned with three principal orthogonal directions. This defines a triplet of orthog-
onal vanishing points in the image plane, which we find in a RANSAC fashion (c) from straight
detected segments (b). Segments are assigned to one of three groups based on the vanishing point
they converge to (d). Intersections of edges in different groups, which we call image corners, are
typically generated by the projection of an orthogonal 3D corner (e). Given an estimate of the cam-
era pose computed from the vanishing points, an image corner can beused to propose a furniture
object (f), a frame (g), or the room box (h)

Fig. 10 The angular distance
α between a segmentsand its
vanishing pointv. α measures
the angle betweens and the
line through the mid point of
sandv

3.2.2 Image corners

Given the estimated triplet of vanishing points, each line segment is assigned to
the vanishing point minimizing the angular distanceα [8], thus partitioning them
in three groups. Segments withα > 0.12 are not assigned to any group and con-
sidered as outliers. Notice that this threshold is less strict than the one used during
RANSAC, as we want to have more candidates at this point. An example is shown
in Fig. 9 (d), where the three different groups are shown, respectively, in green, red
and blue, and the outliers in black.

We assume that two image segments in different groups were generated by seg-
ments that are orthogonal in 3D. The intersection of two suchsegments, which we
call image corner, is thus likely to be generated by a 3D orthogonal corner, such as
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Fig. 11 Creating orthogonal corners from line segments. Given a pair ofsegments converging to
different vanishing points (a), we first find their intersection (b). We do not create corners if the
distance between the intersection and each segment is larger than 30 pixels. We position the third
segment of the corner on the line through the corner position andthe third vanishing point (c).
Two corner configurations are possible (c-d). Last, we “rectify” the corner (e), to make sure it
satisfies the orthogonality constraint imposed by the Manhattan world, which is needed to propose
3D objects from a 2D corner. In fact, corners are created fromdetected image segments, which
do not necessarily satisfy these constraints due to errors in the edge detection. Specifically, instead
of using the image segments, we consider their projections on the line through the corner center
and the vanishing points (e), which are guaranteed to be orthogonal. The final corner is centered
in pc, and defined by segmentsp1pc, p2pc andp3pc. Notice thatp3pc was hallucinated by using
a vanishing point, and does not need to be “rectified”. In the last two rows, we show examples of
corners created from pairs of segments

the corners of the cabinet or the inner corner of the room shown in Fig. 9 (e). Given
an image corner and an estimate for the camera pose, we can propose 3D objects in
likely positions. However, this requires knowing the threesegments forming the im-
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age corner, but typically only two are visible due to occlusions, like the bottom left
corner of the cabinet in Fig. 9 (e). We address this problem by“hallucinating” the
third segment when it is not visible. In the case of the bottomleft cabinet corner, we
consider the intersection between the two visible segments, which converge to two
different vanishing point, and hypothesize that the third segment converges to the
remaining vanishing point in the triplet. This is discussedin detail in Fig. 11, where
we also explain how to use the Manhattan constraints to ensure the orthogonality
of the corner. Last, we stress that, since the main purpose ofcorners is to propose
the correct position and orientation of objects in 3D, and not their size, the length of
corner segments in 2D does not provide any valuable information, as long as their
direction is correct.

3.2.3 Adding objects in the scene using image corners

As discussed above, we create image corners by considering the intersection of each
pair of segments converging to different vanishing points.A corner is then used to
add an object to the scene in a bottom-up data-driven fashion, in order to increase
the acceptance probability in the MH acceptance formula [5].

First, the image corner is used to estimate the position of the furniture object in
3D (Fig. 12 and 13). The proposal is conditioned on the current estimate of both
camera pose and room box. Second, we randomly select the typeof the object,
such as bed, and use the priors for that category to propose the size of the object.
Third, to further increase the acceptance ratio of jump moves, we use a delayed
acceptance mechanism. In fact, corners help propose objects at the right position,
but the size sampled from the prior is often inaccurate. Hence, we briefly sample
over the continuous parameters of the newly added object before consulting the MH
acceptance formula to decide whether to accept or reject thesample.

The full proposal procedure to add a furniture object in the scene is as follows.

1. Randomly choose an image corner, and determine whether itis pointing up or
down (Fig. 12)

2. Determine the object categoryτ by randomly choosing from the four available
classes (bed, cabinet, couch, table), where each class has the same probability.

3. If the corner is pointing up, find the position of the 3D corner on the floor as
explained in Fig. 12, otherwise find the position of the 3D corner as explained in
Fig. 13.

4. SampleN (r i3; µτ3,στ3) to propose the ratior i3 between the room height and
that of the proposed object heighthi . Sethi =

hr
r i3

, wherehr is the current height
of the room box.

5. Sampleu from uniform distributionU (0,1). If u> 0.5, set the widthwi of the
object to be larger than its lengthl i , if u ≤ 0.5 setl i to be larger. The next two
steps are defined for the caseu> 0.5, and can be adapted to the opposite case by
swappingwi with l i .
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6. Sample fromN (r i1; µτ1,στ1) to propose the ratior i1 betweenhi and its largest
dimensionwi . Setwi =

hi
r i1

usinghi from the previous step.
7. Sample fromN (r i2; µτ2,στ1) to propose the ratior i2 between the object largest

and shortest dimensions (wi andl i). Setl i =
wi
r i2

usingwi from the previous step.
8. Shrink any furniture object in the scene colliding with the proposed one
9. In case the object does not fit in the room, expand the room box. This might

involve lowering the position of the floor, raising the ceiling, or increasing the
room width and/or length.

10. Briefly sample over the object continuous parameters using Diffusion move 3
(delayed acceptance)

11. Accept or reject the proposed object by consulting the MHacceptance formula

Similarly, the procedure to add a frame in the scene is summarized below. Notice
that the move adding an object chooses whether to add a furniture object or a frame
with 0.5 probability.

1. Randomly choose an image corner
2. Determine the object categoryτ by randomly choosing from the three available

classes (door, picture frame, window), where each class hasthe same probability.
3. Find the position of the 3D corner, and the room wallsi it is anchored to as

explained in Fig. 14.
4. SampleN (r i3; µτ3,στ3) to propose the ratior i3 between the room height and

that of the proposed frame heighthi . Sethi =
hr
r i3

, wherehr is the current height
of the room box.

5. Conditioned onsi , the frame has either negligible width or negligible length. In
the latter case, sample fromN (r i1; µτ1,στ1) to propose the ratior i1 betweenhi

and widthwi . Setwi =
hi
r i1

usinghi from the previous step. Whenwi is negligible,

setl i =
hi
r i1

6. Shrink any frame in the scene colliding with the proposed one
7. If the frame does not fit on the wall, expand it.
8. Briefly sample over the object continuous parameters using Diffusion move 3

(delayed acceptance)
9. Accept or reject the proposed frame by consulting the MH acceptance formula

3.2.4 Other jump moves

The remaining two jump moves respectively remove an object from the room, or
change the type of one of the objects. The former simply deletes a randomly selected
object, and the proposed change is accepted or rejected using the MH acceptance
formula. Instead, changing the type of an object involves only changes in the prior.
First, an object is randomly selected, and we propose changing its current typeτ to
a different category, also randomly selected. For example,changing the label of an
object from “bed” to “couch” results in using the distribution on size and position
for couches when evaluating the object prior probability, while before the prior for
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Fig. 12 Finding the 3D corner of a furniture object from an image corner, conditioned on the
current room box.pc = (pcx, pcy) denotes the position of the corner on the image plane, andPc =
(pcx, pcy,− f ) is the corner in the 3D camera reference frame, wheref is the focal length. We first
consider the segmentp3pc: if p3y > pcy in the image reference frame, the image corner is pointing
upwards, and we assume that it was generated by an object corner onthe room floor, delimited
by the dashed lines (for the complimentary case of a downwards corner, see Fig. 13). Then, we
cast a ray through the camera centerc and the image cornerPc, and find its intersection with the
room floorPint , which defines the 3D position of the object corner. Assuming objects are aligned
with the walls, we define the coordinate system(X,Y,Z), which is aligned with the room walls and
centered inPint , theXZ plane coinciding with the room floor. We know the 3D corner will expand
along the positiveY axis, and we use the rays between the camera andp1 andp2 to determine the
directions along theX andZ axis. We first find the intersectionP′

1 between rayp1c and the floor,
which, due to small errors in the camera estimate, does not lie exactly on theZ or theX axis. We
then computeP1 as the closest point toP′

1 on either theX or theZ axis, which determines that the
3D corner in the picture expands along the positiveZ axis. We repeat the same forP2 by usingp2,
and in this example the 3D corner expands along the negativeX axis

beds was used. Again, the proposed change is evaluated usingthe MH acceptance
formula. Last, we do not propose changing furniture objectsinto frames or vice
versa. This means that, for example, a couch can only be changed into a table, a bed
or a cabinet, while a door only into a picture frame or a window.
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Fig. 13 Finding the 3D corner of a furniture object from a downwards image corner. We assume
that a downwards image corner is generated by a corner on the top of a 3D object (For the compli-
mentary case of an upwards corner, see Fig. 12). We cast a ray through the camera center and the
corner position in the imagePc, and find the intersectionPint between this ray and the closest room
wall. The 3D position of the corner can lie anywhere on the line((1− t)c+ tPint) betweenPint and
the camera centerc. Any t ∈ [0,1] defines a valid 3D positionPt for the corner, and we chooset
by randomly choosing from the interval[0.4,1.0]. We set the lower bound to 0.4, since values of
t too close to 0 result in positioning the corner too close to the camera, which is a non realistic
configuration. We assume that the object is aligned with the roomwalls and floor, and knowing
that the 3D corner is pointing downwards, only the directionsalong theX andZ axis are left to be
determined. Similarly to Fig. 12, we find the intersectionP′

1 between rayp1c and a plane parallel
to the room floor and passing throughPt , andP1 as the closest point toP′

1 on either theX or theZ
axis.P1 andP2 determine the corner directions in 3D alongX andZ, which in this example are the
positiveX axis and the positiveZ axis

3.3 Initializing the room box and the camera parameters

We initialize the parameters of the camera and of the room boxby proposing candi-
dates from the orthogonal corners detected on the image plane. Each corner is used
to generate a candidate, and we use theN room box candidates with the highest pos-
terior to initialize theN threads used for inference. While we do not solely commit
to these proposals, since the inference process will modifyroom box and camera
parameters, we found that a good initial estimate of the roombox parameters makes
the inference more efficient. We now discuss how a corner is used to generate a
candidate.
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Fig. 14 Finding the 3D corner of a frame from an image corner. We cast a raybetween the camera
centerc andPc, and find the intersectionPint with the closest wall, which determines the position
of the corner in 3D. We know that the frame will expand downwards on the wall, as the corner
on the image plane is pointing down, but we have to determine the3D corner direction along the
X axis. We do so by consideringP′

1 andP′
2, which are obtained by intersecting raysp1c and p2c

with the wall the frame is anchored to. Due to errors in the camera estimate, we cannot expectP′
1

andP′
2 to lie exactly onX, and we then consider their projections onX, P1 andP2. P1 defines the

direction if the distance betweenP1 andP′
1 is smaller than the distance betweenP2 andP′

2, and
useP2 otherwise. This is equivalent to choosing the direction that best satisfies the orthogonality
constraints. In this example, we usedP1 to set the direction of the frame drawn on the wall

Shi et al. [20] showed how to estimate the camera pose from theprojection of an
orthogonal corner and the known focal length. We follow their procedure to estimate
the pitchφ , the roll ψ of the camera and the yawγr of the room, which in our
framework define the camera pose. Notice that the focal length is available from the
estimated triplet of orthogonal vanishing points.

The method by Shi et al. [20] also recovers the 3D directions of the lines forming
the corner. However, we still need to determine the 3D position of the corner, which
can lie anywhere on the line defined by the camera center and the corner position
on the image plane, as illustrated in Fig. 15. Since we cannotdetermine absolute
positions and sizes from a single image, we arbitrarily position the corner on the
line such that the distance between the corner and the cameracenter is 10 units.

This still leaves the room dimensions(hr ,wr , lr) as free parameters. Since abso-
lute sizes cannot be used when reconstructing from a single image, we set the room
height such that the ratio between the height of the camera from the floorhc andhr

takes plausible values (Fig. 15). Specifically, we sample uniformly from the interval
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Fig. 15 Finding the position of a 3D room corner from an image corner. Wefirst cast a ray between
the corner in the image and the camera center. We then position the 3D room corner along this line.
Different positions generate different room boxes, as illustrated by the two dashed examples above.
Once the 3D position is chosen, we set the room heighthr such that the ratio between the height
of the camera from the floorhc andhr falls in the range of plausible values (see text). Further, we
have to enforce that the room box is big enough to contain the camera

[µch−2σch,µch+2σch], with step σch
5.0 . For each different height, we setwr and lr

such thatwr
hr

= µr2 and lr
hr

= µr2, and if the room box is not big enough to contain
the camera, we expand it. We then briefly sample over room box and camera param-
eters by alternating Diffusion moves 1 and 2, and keep the sample with the highest
posterior.

3.4 Exchanging information among threads

At the end of the inference process, each thread outputs the sample with the highest
posterior. In most cases, we found that some objects are found only by some of the
threads, as illustrated in Fig. 16. One thread did not find thepicture (a), while the
other did not find the nightstand (b). While a longer running time could potentially
allow each thread to find all objects, we propose instead to let threads exchange
objects at the end of the inference (c).

Since object position and size is defined relatively to the room, we need an ex-
changing mechanism taking into account that different threads have different esti-
mates of the room box. Further, the camera parameters found by each thread are po-
tentially different. Hence, we exchange an object between asource thread and a des-
tination thread by enforcing that the projection of the object in the source matches
as closely as possible the projection of the object in the destination (Fig. 17).

At the end of inference, we add to the best sample found by a thread all the
objects found by the other threads, one at a time, and keep theone that provides
the best posterior. We repeat thisK = 10 times, or until there is no improvement
in the posterior. While less greedy methods are possible, this approach works well
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Fig. 16 The result (c) of exchanging objects between the samples found by two different threads
(a andb).

in practice. The complete procedure for exchanging objectsamongN threads is as
follows:

1. For each threadi, save inθ 0
i the best sample found by threadi

2. For eachθ 0
i , and fork= 1, ...,K

a. Setθ k
i = θ k−1

i . Compute the posteriorpk
i of θ k

i . Get all the objects found by
other threadsO = ∪N

j=1O j with j 6= i, whereO j = (o j1, ...,o jn) is the list of

objects inθ 0
j .

b. for each objectow in O, createθ k w
i by addingow to θ k

i , and compute the
posteriorpk w

i . Setθ k
i max= θ k w

i such thatpk w
i = maxw′ pk w′

i .
c. if the posterior ofθ k

i max is larger thatpk
i , setθ k

i = θ k
i max. Otherwise, stop and

returnθ K
i = θ k

i .

3. Returnθ K
i with the largest posterior.

4 Results

We start by evaluating the performances of the various components of our algorithm
in terms of the error on the room layout estimation [8, 15, 23], which is a standard
measure in this field. This error compares the projection of the estimated room box
against the ground truth, where each pixel was labeled according to the room face
it belongs to (ceiling, floor, left, middle and right wall), by computing the ratio of
misclassified pixels.

In Table 1, we evaluate the impact of the different components of our approach
on the test portion of the Hedau dataset [8], consisting of 104 color images. In
the left column we show the contribution of the priors in the scenario where the
likelihood function uses edges and orientation maps, as in our 2012 CVPR paper [4].
We see that the room prior reduces the layout error, and so do priors on objects. This
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Fig. 17 Exchanging furniture objects (top row) and frames (bottom row) between two samples.
Consider adding the object in (a) to (b): the camera parameters and the room boxes are different,
and this is a problem since object coordinates are relative tothe room reference frame. We address
this by making sure that the projection of the transferred object (e) matches that of the original
one (a). First, we use the original camera to project the object corners that touch the floor, shown
in black in (c). The star indicates the projection of the center of the object “floor”. We then cast a
ray between the destination camera and the star, and intersect itwith the floor of the destination
room. This gives us the object “floor” center in the coordinatesystem defined by the destination
room box. The transferred object will be aligned with the walls of the destination room, denoted
by the arrows in (d). We determine the object width and length by intersecting thearrows with
the dashed lines (d), which might not be aligned with the destination walls due to the differing
camera parameters. The object height is found by projecting thecorners on the top of the object
under the original camera (c). For each cornerc, we consider rayr1 through its projection and the
destination camera, and rayr2 orthogonal to the room floor and through the corresponding corner
of the object on the floor. The 3D position ofc in the destination room is given by the point onr2
closest tor1. The 3D length of the vertical dashed lines determines the height of the transferred
object. This length might not be the same for all four lines, and weset the height of the object
by averaging them. The final transferred object is shown in (e). The second row illustrates the
equivalent procedure for frames, where we consider the projection of the frame’s corners on the
closest wall

suggests that adding realistic objects in the room drives the inference towards better
spatial configurations.

We then evaluate the benefits of the different components of the likelihood, con-
sidering three cases: 1) we do not allow any object in the room, 2) we allow objects
in the scene, and 3) we allow exchanging information among threads. Interestingly,
exchanging objects allows choosing a better room box, sincemore objects provide
more evidence on the correct room layout. There is no improvement when only
edges are used, and we believe this happens because the likelihood is not robust
enough in this case. Qualitative examples of these improvements are shown in Fig.
18.
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Fig. 18 Effects of the individual components of our model. Using only edges we get a poor esti-
mate of the room box, due to the edge detector missing the wall edges (a). By adding orientation
maps to the likelihood (b), where we draw in green and blue the pixels assigned to the two orthog-
onal vertical surfaces and in red the horizontal pixels, we obtain a better room box (c). Also adding
geometric context helps. In (d), the algorithm is confused by several mistakes made in estimating
the orientation maps, but geometric context (e) helps the reconstruction process (f). In (e), we used
red for pixels labeled as floor, yellow for left wall, green for middle wall, and gray for objects. Last,
using priors on object 3D position and size avoids proposing objects with unrealistic size, which
would otherwise often “latch” to image features (g-h)

Table 2 shows that our method is comparable to the state-of-the-art on the Hedau
dataset, and also report results on the UCB dataset [24], consisting of 340 black and
white images. When comparing with state-of-the-art, we consider our full algorithm,
including all the likelihood components, and with the object exchange enabled.

Then, we evaluate on object recognition. We ground truthed the UCB [24] and
Hedau dataset [8] by manually identifying the seven object classes we experimented
with, not considering objects occupying less than 1% of the image. To evaluate de-
tection, we project the 3D object hypothesized by our model onto the image, and
compare this with the ground truth object position. If the intersection of the two
areas is more than 50% of their union, we consider it a correctdetection. We first
measure how many objects we correctly identified for each of the two main cat-
egories (furniture and frames), even if there is confusion within the subcategories
(e.g. when we label a table as a couch, or a window as a door). Weprovide preci-
sion and recall scores based on this criterion. Second, we measure the accuracy we
achieved within each of the two categories, as the percentage of objects that were
assigned to the correct subcategory.
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We report in Table 3 that using object priors greatly improves precision and re-
call, for both furniture and frames. When we do not use priors,objects are not la-
beled (e.g., we do not know whether a furniture object is a couch or a bed), and
subcategory accuracy cannot be evaluated. Table 4 shows that geometric context
improves all recognition scores, except for frame subcategory classification on the
Hedau dataset. In general, performances are more modest on the UCB dataset, and
this includes also the room layout error. This black and white dataset is in fact more
challenging, as several images are extremely blurry. We also notice that in general
geometric context only introduces small improvements in the subcategory classifi-
cation, if we exclude furniture on the UCB dataset. This is because adding a new
feature allows to obtain more accurate object fits, but the “burden” of classification
is still entirely on the prior on size and position. We posit that having different geo-
metric models for object classes, such as tables with legs orcouches with backrests,
as well as class-dependent appearance models, would improve this score.

The effects of exchanging objects among threads are available in Table 5. There
is a trend showing that exchanging objects achieves better recall at similar or slightly
lower levels of precision. This is because adding objects from other threads allows
to find many more objects, at the cost of a few additional mistakes. Variations in
subcategory classification are mostly negligible. Last, wereport confusion matri-
ces for both furniture and frames on the Hedau dataset. We here consider our full
approach, including edges, orientation maps, geometric context, priors and object
exchanging. We see that we recognize more objects in categories that are better ap-
proximated by a single block, such as beds and cabinets. Performances decrease for
concave objects like table, that are not well approximated by a convex box. Also,
there is more confusion between object categories similar in size, such as couches
and tables, or windows and picture frames.

Qualitative results are available in Fig. 19, where we show the scene reconstruc-
tions provided by the full algorithm. The most typical failures are shown in Fig.
20.

Table 1 Analysis of the components of our approach based on room layout error, evaluated on the
Hedau test set [8]

Edges + OM Edges Edges + OM Edges + OM + GC

No Prior 20.4% No objects 24.1% 21.3% 21.8%
Room prior 19.7% Objects 20.7% 17.8% 17.2%

Room + obj prior 17.8% Exchange objects 14.2% 14.6% 13.6%
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Table 2 Comparison with state-of-the-art on room layout error

Dataset Hedau [8] Lee [15] Schwing [19] Our full approach

Hedau [8] 21.2% 16.2% 12.8% 13.6%
UCB [24] NA NA NA 14.2%

Table 3 Benefits of object priors evaluated on UCB and Hedau datasets. P, R, and S denote Preci-
sion, Recall and Subcategory Accuracy

UCB [24] P R S Hedau [8] P R S

Furn no prior 19.4% 10.4% NA 27.1% 9.2% NA
Furn prior 31.0% 20.1% 38.0% 32.5% 20.3% 50.0%

Frames no prior 21.8% 14.0% NA 23.1% 19.5% 61.2%
Frames prior 27.2% 19.7% 60.0% 36.1% 27.5% 62.6%

Table 4 Benefits of geometric context evaluated on UCB and Hedau datasets

UCB [24] P R S Hedau [8] P R S

Furn no gc 31.0% 20.1% 38.0% 32.5% 20.3% 50.0%
Furn gc 33.7% 27.7% 50.1% 50.0% 24.2% 51.6%

Frames no gc 27.2% 19.7% 60.0% 36.1% 27.5% 62.6%
Frames gc 28.2% 24.3% 60.8% 38.4% 28.3% 61.2%

Table 5 Effects of exchanging objects among threads on UCB and Hedau datasets

UCB [24] P R S Hedau [8] P R S

Furn no swap 33.7% 27.7% 50.1% 50.0% 24.2% 51.6%
Furn swap 33.0% 29.7% 50.0% 53.5% 28.5% 51.3%

Frames no swap 28.2% 24.3% 60.8% 38.4% 28.3% 61.2%
Frames swap 28.4% 37.3% 59.8% 37.5% 35.5% 66.0%

Table 6 Confusion matrices on Hedau test set [8]

Bed Cabinet Couch Table Door Picture Window

Bed 14 1 7 1 Door 7 0 7
Cabinet 1 12 2 2 Picture 0 29 13
Couch 6 1 7 5 Window 8 5 28
Table 4 3 4 6
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Fig. 19 Scene reconstructions provided by our full approach. We show the room box in red, furni-
ture in blue and frames in green

5 Conclusions

Our top-down Bayesian approach for understanding indoor scenes is competitive
with state-of-the-art approaches on the task of recoveringthe room box. Interest-
ingly, priors on 3D geometry both improved object recognition scores, and provided
better room box estimates. We believe this is an interestingfinding towards provid-
ing top-down scene interpretations that are globally consistent in terms of geometry
and semantics. Another strength of this method is that it does not commit to partial
configurations, and can recover from initial errors, one example being the improve-
ments on the initial estimate of the room box.

We posit that our method will prove more powerful as it integrates more sophisti-
cated object models, including non convex-approximationssuch as tables with legs.
In fact, more detailed geometry should help distinguish between classes that are sim-
ilar in position and size. Also, recent work by Hedau et al. [10] showed that scene
interpretation is enhanced by more accurate geometric models, such as blocks with
backrests. More sophisticated models introduce additional complex constraints on
the structure of objects (for example, chairs with four symmetric legs), which our
Bayesian framework could accommodate relatively easily. Further, the Bayesian
formulation also allows integrating additional image evidence that would make the
model more robust. For example, visual inspection of the results suggested that
adding category dependent appearance models is a promisingdirection of research,
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Fig. 20 Some typical failures. Due to clutter we often hallucinate objects (a-d). For example, in
(b) we propose a bed whose edges “latch” to those of the carpet, and to the top of the armchairs.
However, in this case our approach still provides a reasonable approximation of the space occu-
pancy of the scene. In other situations (e-f), we hallucinate boxes in the gap among objects, thus
providing a wrong estimate of the occupied space, or completely miss objects (g-h). This mostly
happens when faint edges are missed by the edge detector, such as those of the bed in (g). Further,
we often confuse object categories similar in size and position. For example, the table in (i) is
wrongly labeled as a bed, and the opposite happens in (j). The wall in (k) is labeled as a cabinet,
and we sometimes confuse an object that is directly facing the camera for a frame (l). We also
show some cases where the algorithm estimated the wrong room box (m-n). In (m), this is caused
by the edge detector missing the edge between the room walls and the ceiling completely. Other
more catastrophic failures are due to bad initial estimates of the camera, from which the algorithm
could not recover (o-p)

as well as enforcing that projections of objects are uniformin terms of color and
texture.
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