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Figure 1. The use of more specific and detailed geometric models
as proposed in this paper enables better understanding of scenes,
illustrated here by localizing chairs tucked under the table in 3D.

Abstract

We develop a comprehensive Bayesian generative model
for understanding indoor scenes. While it is common in this
domain to approximate objects with 3D bounding boxes, we
propose using strong representations with finer granular-
ity. For example, we model a chair as a set of four legs, a
seat and a backrest. We find that modeling detailed geom-
etry improves recognition and reconstruction, and enables
more refined use of appearance for scene understanding.
We demonstrate this with a new likelihood function that re-
wards 3D object hypotheses whose 2D projection is more
uniform in color distribution. Such a measure would be
confused by background pixels if we used a bounding box
to represent a concave object like a chair.

Complex objects are modeled using a set or re-usable 3D
parts, and we show that this representation captures much
of the variation among object instances with relatively few
parameters. We also designed specific data-driven infer-
ence mechanisms for each part that are shared by all objects
containing that part, which helps make inference transpar-
ent to the modeler. Further, we show how to exploit contex-
tual relationships to detect more objects, by, for example,
proposing chairs around and underneath tables.

We present results showing the benefits of each of these
innovations. The performance of our approach often ex-
ceeds that of state-of-the-art methods on the two tasks of
room layout estimation and object recognition, as evaluated
on two bench mark data sets used in this domain.

Figure 2. A visual summary of the main contributions of this
work. 1) Detailed geometric models, such as tables with legs and
top (bottom left), provide better reconstructions than plain boxes
(top right), when supported by image features such as geometric
context [5] (top middle), or an approach to using color introduced
here. 2) Non convex models allow for complex configurations,
such as a chair under a table (bottom middle). 3) 3D contextual re-
lationships, such as chairs being around a table, allow identifying
objects supported by little image evidence, like the chair behind
the table (bottom right). Best viewed in color.

1. Introduction

Indoor scene understanding from monocular images has
received much recent interest, and advancements in estimat-
ing the 3D geometry of such environments [2, 7, 11, 17]
have enabled several interesting applications. For example,
Gupta et al. [1] used extracted 3D information to predict
human activities, while Hedau et al. [3] and our previous
work [10] showed that knowledge of the 3D environment
helps object recognition. Further, Karsch et al. [6] exploited
the inferred 3D geometry to insert realistic computer graph-
ics objects into indoor images.

State-of-the-art approaches to modeling indoor scenes
largely use right-angled parallelepipeds (3D boxes) as con-
tainers. A single box is used to approximate the walls, floor,
and ceiling enclosing the scene (room box), and also to rep-
resent objects inside it, such as beds and tables. Alterna-
tively, blocks have been used to reason about clutter, but
without further understanding of what is in the scene [7].
These representations allow promising reconstruction re-
sults, and hold the advantage that gross geometric structure
simplifies inference.



However, these representations have four main limita-
tions, which we illustrate using Figure 2. First, bounding
boxes of concave objects projected into images tend to in-
clude much background, which is confusing evidence for
inference. For example, the middle-top image shows the
output of an appearance-based 2D classifier (geometric con-
text [5]), where pixels with higher probability of being part
of an object instead of the wall or the floor are colored gray.
Fitting a single 3D block to this feature map will be ham-
pered by the confusing evidence, whereas a more articulated
table model with legs and top explains the classification re-
sults for pixels between the legs of the table. Second, even if
a single-bounding-box representation succeeded in discov-
ering the presence of an object in the image, the parameters
of a single fitted block have only modest power to distin-
guish objects. We previously showed that it is possible to
classify furniture objects based only on 3D bounding box
dimensions [10], but with much confusion when objects are
similar in size. Having a class-dependent topological struc-
ture should help resolve such ambiguities, and in this case
a composite table model is clearly a better fit than a sim-
ple box. Third, plain blocks cannot capture complex spatial
configurations, and would not allow sliding chairs under the
table (Figure 2, bottom row). Finally, a finer representation
is also more useful for robot applications. For example, a
small robot would be able to infer that there is a possible
path between the table legs.

These observations lead us to propose a principled
framework for modeling indoor scenes with representations
for articulated objects, such as the table and the chairs in
Figure 2. As in our previous work [10], we set out to si-
multaneously infer the 3D room box, the objects in it, their
identity, and the camera parameters, all from a single im-
age. Our first key contribution to this goal is to integrate
composite 3D geometry for objects. Our results show that
doing so improves both the global 3D reconstruction of the
scene and object recognition. We also show that more accu-
rate geometry both supports, and benefits from, higher level
image features, such as pixel grouping based on appearance.

A second key contribution of this work is a geometric
representation based on re-usable parts, from which we
build more complex models. We designed data-driven infer-
ence for each of these parts. Importantly, inference strate-
gies designed for a specific part are naturally shared by all
the objects containing that part, and the modeler can create
models using the available parts without having to worry
about the inference. A third contribution is showing how to
exploit contextual relationships between objects to help
inference if there is significant occlusion or weak image ev-
idence. For example, we show how to improve recognition
of chairs by looking around tables. There is often little im-
age evidence supporting the identification of a chair, per-
haps just a leg or the top of a backrest (Figure 2, bottom

right), but this can be addressed using top-down informa-
tion, by looking for chairs in places that are likely based on
the current model hypothesis.

Other related work. To our knowledge, the first attempt
in this domain at using geometry other than blocks was by
Hedau et al. [4], who used a plane to model backrests on
top of blocks. However, if we exclude the backrest, their
model still relies on the block representation, and they do
not attempt to distinguish among object classes based on
their geometry. Satkin et al. [12] then proposed to match
full models of bedrooms and living rooms available from
Google Warehouse, but they do not allow any variability in
the size and the arrangement of the objects in the model. We
also relate to recent work in object recognition that relies
on modeling the 3D geometry of object categories [8, 16].
A first important difference is that our method understands
objects in the context of the scene, with a likelihood func-
tion that evaluates the fit of the entire scene (Sec. 2.4), as
opposed to having a different appearance model trained for
each category. Second, we advocate a stronger 3D repre-
sentation, where geometric variations within an object cat-
egory are modeled in 3D, for example using priors on 3D
size, instead of learning orientations and distances among
the parts of an object in 2D [16]. Our 3D representation
is also independent of the camera, hence we do not need
to discretize the viewpoint and learn a different model per
viewpoint [8, 16]. Lastly, this work is related to that of
Schlecht and Barnard [13] on learning topologies of furni-
ture from images by assembling re-usable parts.

2. Modeling indoor scenes
We use a Bayesian generative model, where we assume

that images are generated by the projection of the 3D ob-
jects in the scene [10, 11]. We partition model parameters,
θ, into scene parameters, s, encoding the 3D geometry, and
camera parameters, c, modeling the perspective transforma-
tion. We define the posterior distribution as

p(θ|D) ∝ p(D|θ)p(θ) , (1)

where D are features detected on the image plane and p(θ)
is the prior distribution over model parameters.

Scene parameters s = (r, o1, ..., on) include the room
box and objects in it, where the number of objects n is not
known a priori. We model the room as a right-angled par-
allelepiped [7, 3, 10, 11], defined in terms of its 3D center,
width, height and length

r = (xr, yr, zr, wr, hr, lr, γr) , (2)

where γr is the amount of rotation around the room y axis
(yaw) [11]. We model the imaging process with a standard
perspective camera model

c = (f, φ, ψ) , (3)



where f , φ and ψ are, respectively, the focal length, the
pitch and the roll angle. Since absolute positions cannot
be determined when reconstructing from single images, we
arbitrarily position the camera at the origin of the world co-
ordinate system, pointing down the z-axis. [10, 11]. Further,
the extrinsic camera rotations (three degrees of freedom) are
fully determined by φ, ψ and the yaw γr of the room.

A key contribution of this work is representing object
models by assemblages of re-usable geometric primitives
(parts), as opposed to simple bounding boxes. For example,
Figure 3 shows a chair built by stacking a set of four sym-
metric legs, and an L-shaped structure. Here, we provide
a generic formulation that is independent of the parts used,
and in §2.3 we describe the parts used in our experiments.

Each object, oi, is defined by its type, ti (e.g., chair,
couch, table), and its geometrical structure sti, which is a
function of the object type:

oi = (ti, sti, x, y, z, w, h, l) . (4)

The last six parameters are the 3D center and size of a
bounding box containing the entire object model. We de-
fine the size and position of object parts relative to the object
bounding box, as one does not have access to absolute sizes
when reconstructing from single images. We also assume
that objects are aligned with the room walls [7, 11].

A model’s structure is created by choosing from a set of
available parts. We constrain the modeler to stack the parts
vertically, although extensions are possible. Notationally,

sti = (p1, ..., pn, hr1, ..., hrn) . (5)

Here (p1, ..., pn) is the collection of parts, which is fixed
for each object class. Variable hri denotes the height of the
ith part expressed as a ratio of the total object height, with∑n
i=1 hri = 1. For example, the legs component in the

chair model accounts for half of the chair height, implying
hr1 = 0.5 and hr2 = 0.5 (Figure 3, bottom left). Parts
are ordered vertically from bottom to top, and we will refer
to the bottom one as the support. Each part pi comprises a
set of internal parameters pθi, which are defined relatively
to the bounding box occupied by that part. The height of a
chair’s seat is an example of an internal part parameter, and
Figure 3 (bottom right) shows changing it while keeping the
part bounding box fixed.

To summarize, an object is a vertical stack of parts. The
object size and position in the room are specified by its
bounding box, while part heights (hr1, ..., hrn) determine
bounding boxes for each part. Last, internal part parameters
are defined relatively to these boxes. An advantage of this
representation is that object parameters are subdivided into
three sets, and this is is very convenient for inference (§3).
Changes in the bounding box parameters propagate to all
the parts (Figure 3, top right), changes in the part heights

Figure 3. Top left: A chair is built by stacking two parts, a group of
four legs and an L-shaped component. Top right: Changes in the
object bounding box propagate to each part. Here the object width
is divided by two, and this results in parts that are half as wide.
Bottom left: Parts are stacked vertically, with their height defined
as a ratio of the total object height (two different ratios shown).
Bottom right: Changing the internal parameters of a part, here the
L shaped one, while keeping the part bounding box fixed.

propagate to the parameters for the affected parts (Figure 3,
bottom left), and changing the internal parameters results in
changes local to the specific part (Figure 3, bottom right).

We impose two simple containment constraints: 1) ob-
jects must be entirely inside the room; and 2) objects can-
not overlap. We emphasize that precise geometry enables
configurations that bounding boxes would not, for example
sliding a chair under a table (Figure 2). For efficiency, dur-
ing inference we first check if the objects’ bounding boxes
collide, and only if that is the case do we check collisions
using the geometry of the individual parts.

2.1. Prior distributions

Priors on the room box, objects, and camera parameters
help constrain the search over parameter space, and also al-
low for recognition based on size and position [10]. Since
absolute size and position cannot be inferred from single
images, priors are defined in terms of size and position ra-
tios. We extend this basic approach to composite object
models that enable much better recognition.

Assuming independence among objects [10], we define

p(θ) = π(ch)π(r)
n∏
i=1

π(oi) , (6)

where π(ch) is a prior on the camera height with a normal
distribution with parameters (µh, σh) [10], and π(r) is a
relatively non-informative normally distributed prior on the
room box parameters, parameterized by the ratio between
room width and length r1, and the ratio between the floor
area and the room height r2. Specifically,

π(r) = N (r1, µr1, σr1)N (r2, µr2, σr2) . (7)

These parameters are learned from training images [10].



An object prior is defined over the size and position of
its bounding box. We consider the ratios between
• height and largest dimension or1 = h/max(w, l)
• width and length or2 = max(w, l)/min(w, l)
• room height and object height or3 = hr/h

In our previous work [10], we showed how these quanti-
ties help distinguish between object classes. For example
or2 discriminates between roughly square furniture, such
as chairs, and objects with a rectangular base, such as
couches [10]. All these quantities are assumed to be nor-
mally distributed [10]. Finally, we also use a Bernoulli dis-
tributed binary variable d, encoding whether an object is
against a wall [10] (e.g., usually true for beds). For frames
we similarly encode the probability that they touch the floor.
The full prior for an object is then

π(o) = π(d)
3∏
j=1

N (orj , µj , σj) . (8)

We set the parameters of object priors from text data avail-
able from online furniture and appliance catalogs [10].

2.2. Building object models

As part of this work, we implemented a modeling frame-
work that allows any object assembled from the palette of
geometric parts. To create a new object, the modeler spec-
ifies how these parts are arranged in the vertical stack, and
provides parameters for the prior distributions as described
above. The modeler also needs to provide the relative
heights (hr1, ..., hrn) and the internal parameters of each
part (pθ1, ..., pθn). She can either provide a single value for
each parameter, which will be kept fixed for each object of
that category, or a valid range. In the latter case, we assume
that each value in the range is equiprobable. Rather then
include the internal parameters of an object as part of its
prior, which leads to additional model selection problems,
we simply set them as part of the model. In this work, we
set values by manually fitting models to training images.

2.3. Designing object parts

We designed object parts to be modular so that they can
be re-used in the modeling phase. We further design specific
data-driven inference for each part, as we have found that
dedicated inference, which takes advantage of part-specific
characters, helps deal with the challenges of fitting complex
geometry. The inference strategies defined for a part are
shared by all objects using that part, and are transparent to
the modeler. We emphasize that we only need to implement
these once — i.e., the inference for the four legs of a table
is the same module as for the four legs of a chair.

All parts used in this work are built from simple geomet-
ric primitives, such as blocks and cylinders, which can be
easily rendered with OpenGL, as this is required to evaluate

Figure 4. Top row: parts L1, L2, L3. These are distinguished by
constraints on where the vertical “back” can be attached. L1 is
completely free, and shows all four possibilities. L2 and L3 are
for restricting to long side and short side respectively. Middle: a
single block, a set of four symmetric legs, and a frame. Bottom:
the free parameters of the L-shaped component and of the set of
legs are shown by the double arrows.

the likelihood function (described in the next section). Fur-
ther, each part module has a collision detection mechanism
to determine whether there is 3D overlap with any of the
other objects in the scene.

We use three kinds of parts in this work (Figure 4): an L-
shaped component built from two blocks, a set of four sym-
metric cylindrical legs, and a single block. The L compo-
nent is parametrized in terms of the height of the horizontal
block, and the width of the vertical block relative to the part
bounding box. We use a third discrete variable to specify
the side where the vertical block is located. Since we as-
sume that all objects are aligned with the room walls, only
four configurations are possible (Figure 4, top left). Within
this context, we provide three kinds of L-shaped parts (Fig-
ure 4, top): L1, where the vertical block can be along any
side, L2, where the vertical block is restricted to a long side
of the horizontal block, and L3, where it is on a short side.

The set of cylindrical legs is parametrized in terms of the
leg radius and the offset between the leg position and the
corner, both of which are shared among all legs. Finally,
the simple block part does not require any parameters, as
we assume that the block is as big as the part bounding box,
which is encoded at the next level up.

This modeling system, together with the modest set of
parts, is able to capture a large number of configurations
common in the base structure of much furniture. Having
parts that capture some of the complexities of the objects,
while inheriting their bounding box, simplifies the work of
the modeler, and proves effective for inference (see Sec. 3).

In this work, we modeled 6 different furniture types:
simple beds (a single block), beds with headrests (an L3
component), couches (an L2 component), tables (a stack of
four legs and a single block for the top), chairs (a stack of
four legs and an L1), and cabinets (a single block). Lastly,
we use thin blocks attached to a room wall to model frame
categories (Figure 4, middle right), which include doors,
picture frames and windows [10].



2.4. The likelihood function

The likelihood function measures how well the detected
image features D match the features predicted by the cur-
rent model hypothesis θ. This function includes three differ-
ent components that have been proved useful in this domain:
edges [10, 11], orientation surfaces [7, 10], and geometric
context [2, 5, 7]. We also introduce a new component that
evaluates the color grouping predicted by the model.

The edge likelihood [10] p(Ed|Eθ) has a factor for each
edge point matched to a model edge, and factors for missing
edge points, and noise (unmatched) edges. Matched edges
contribute normal densities for the distance between edge
location and the projected model edge, and for the angle be-
tween the edge direction and the projected model edge [10].

Orientation surfaces [7] are often used in indoor environ-
ments, where most pixels are generated by a plane aligned
with one of three orthogonal directions, and we estimate
which one using the approach by Lee et al. [7]. We ap-
proximate the orientation likelihood p(Od|θ) as the fraction
of pixels such that the orientation predicted by the model
matches that estimated from the image data (Od) [10]. Fol-
lowing Hedau et al. [2], we also consider geometric context
labels, which estimate the geometric class of each pixel,
choosing between: object, floor, ceiling, left, middle and
right wall. This is done using a probabilistic classifier
trained on a mixture of color and oriented gradient features.
We use the code and the pre-trained classifier available on-
line [2]. For each pixel pk, this provides a probability dis-
tribution gck = [gck1, ..., gck6] over the six classes. Given
the label l predicted by the model for pixel pk, we define
p(gck|pk) = p(gck|pk = l) = gcl , and

p(GC|θ) =

∑
pk∈I p(gck|pk)
size(I)

, (9)

where we average the contributions of all image pixels.
Since the available classifier was trained against data where
only furniture was labeled as objects, and not frames, we
consider frames as part of the wall they are attached to, and
not as objects when we evaluate on geometric context.

We also introduce a new component promoting that pix-
els from the same color distribution are grouped together
(Figure 5). This is similar to evaluating the quality of the
grouping provided by a 2D segmentation algorithm, with
the key difference that the grouping is provided top-down
by the model hypothesis. Note that the possible group-
ing hypotheses are significantly constrained compared with
segmenting an image without any such guidance. In this
scope, detailed geometry and 3D reasoning play an impor-
tant role, as shown in Figure 2, where structures with legs
provide a much better grouping than a plain block. Further,
the reasoner does not need to entertain arbitrary groupings,
as it would if it were doing bottom up clustering.

Figure 5. Our color likelihood encourages pixels similar in color
to be grouped together. For each pixel, we compute a color his-
togram in LAB space. In columns 2 and 3, we select a pixel
(marked with a yellow star) and compute the chi-square distance
between its histogram and that of all other pixels. We show this in
a heat map fashion, where we set the red channel proportionally
to this distance. In the first row, pixels within the cabinet are very
close in LAB space. We can see the benefits of using color by
comparing the best fit found without using color (column 1) and
with color (column 4). Best viewed in color.

We consider two pixels in the same group if they are both
part of the projection of the same object, or of the same
room surface, but we consider walls as a single group, as
they tend to be of the same color. Intuitively, two pixels
pi and pj have a high probability of being together if their
distance dij in feature space is small. We use

p(pi, pj |θ) ≈ d
(1−Ig(pi,pj ,θ))
ij ∗ (1−dij) Ig(pi,pj ,θ) , (10)

with dij ∈ [0, 1] (see below), and Ig(pi, pj , θ) is an indica-
tor function that takes value 1 if the model assigns the two
pixels to the same group, 0 otherwise. Notice that we have
a high p(pi, pj |θ) in two complimentary cases: 1) the two
pixels are assigned to the same group and their distance is
small, as we want groups to be perceptually uniform; and
2) the two pixels are in different groups and the distance
is large, as groups (objects) tend to be different from each
other. We measure the global quality of the grouping over
the entire image by averaging the pairwise contributions

p(I|θ) ≈
∑i≤N
i=1

∑j≤N
j=i g(pi, pj |m)

(N2 −N)/2
(11)

where N is the number of pixels in the image.
This is a generic formulation of a grouping function, that

allows for any choice of feature space. In this work, we ex-
periment with color and use dij = χ(CHi, CHj), where
χ(CHi, CHj) is the chi-square distance between the color
histograms computed at pixels i and j over a window of
size n = 15. We use histograms instead of simple pixel in-
tensities because we want to capture the color distribution
of objects and surfaces, which arise at a larger scale than
the pixel level. We experimented with the LAB color space,
and used a 3-dimensional histogram with 8 bins per dimen-
sion, where elements are softly assigned to bins. We denote
the contribution of this color distance grouping function by
p(C|θ). To reduce computation time, we only use the center
pixels of 5-by-5 grid cells.



The four components are combined into

p(D|θ) ≈ p(Ed|Eθ)p(Od|θ)αp(GCd|θ)βp(C|θ)δ. (12)

As in our previous work [10], we set α = 6. We set β = 12
and δ = 30 by running our algorithm on the training portion
of the Hedau dataset [2]. Here we used a coarse grid search
over β and δ, with a step of 2, using the room box layout
error (defined in Section §4) as an objective function. For
black and white images, we used δ = 10, as only a third of
the information is available.

3. Inference
We use MCMC sampling to search the parameter space,

defined by camera and room box parameters, the un-
known number of objects, their type, and the parameters
of each object and its parts. As in our previous work [10,
11], we combine two sampling methods—reversible jump
Metropolis-Hastings for discrete parameters (how many ob-
jects, what type they are), and stochastic dynamics [9, 10]
for continuous parameters (camera, room box, and object
parameters). Proposals from these two samplings strategies
are referred to as “jump” and “diffusion” moves [15].

Since indoor images satisfy the Manhattan world as-
sumption where most surfaces are aligned with three or-
thogonal directions, we start by detecting a triplet of orthog-
onal vanishing points that we use to initialize the camera pa-
rameters. This has become a standard procedure in this do-
main [2, 7, 11, 10]. We initialize the parameters of the room
box by generating candidates from orthogonal corners de-
tected on the image plane [10]. We sample over the contin-
uous parameters of each candidate and use the one with the
best posterior to initialize the room box parameters. Then,
we randomly alternate the following moves:

• sample over room box and camera parameters
• jump move: add/remove an object, change the cate-

gory of an object
• pick a random object and sample over the parame-

ters of its bounding box, or over (hr1, ..., hrn) and
(pθ1, ..., pθn). In the latter case, enforce

∑
i hri = 1,

and that all parameters are within the allowed range.

This procedure is executed using twenty threads, where
each thread executes the steps above. At the end, we al-
low thread to exchange the objects they have found, and we
keep the best sample found across the threads [10]. The
whole procedure takes on average 15 minutes per image.

Jump moves. All jump moves are accepted or rejected
using the Metropolis Hastings acceptance formula. Switch-
ing the category of an object, causes two changes: 1) the
prior distribution used to evaluate the object size and po-
sition; and 2) the geometric representation of the object.
For example if a simple bed is turned into a couch, the bed

Figure 6. We use detected “pegs” to propose furniture with legs
(left). Proposing a table from two pegs (middle) requires estimat-
ing the width/length and the height of the table, proposing it from
three only leaves the height as a free parameter. View in color.

“box” is replaced with an L component, by making sure
that their bounding boxes coincide. To increase the accep-
tance ratio of jump moves, we propose objects from im-
age corners in a data-driven fashion [11], and briefly sam-
ple its continuous parameters before evaluating Metropolis-
Hastings (delayed acceptance [11]).

Part-specific inference. Efficient inference of complex
structure, such as chairs with legs, seat and backrest, is more
exacting than that of simple blocks. We designed specific
inference moves for the different parts, which are re-used
by all objects containing that part. While all objects share
the data-driven proposal mechanism from corners, we use
specific inference for the L-component and the set of four
legs. For the former, we have to keep in mind that two to
four configurations are possible (Figure 4, top row), and we
try them all whenever a jump move involves an object con-
taining an L component.

Legs are harder to identify, since they do not generate
corners on the image plane that can be used for data-driven
proposals. We thus detect peg structures, which are likely
candidates for being legs (Figure 6, left), as suggested by
Hedau et al. [4]. A peg can be used to propose a four-legged
component the same way that a corner is used to propose a
block. More effective proposals can be generated from two
or even three of such pegs (Figure 6, center). We then use
this proposal mechanism, as well as the standard ones, for
all objects whose support is a set of four legs, namely tables
and chairs. Note that this is different from Hedau’s work [4]
where objects are modeled with bounding boxes, and pegs
are part of the likelihood, as a way to explain the missing
edges between the legs of a table. Our likelihood does not
need to explain that missing edge, since not finding it is
predicted by the strong geometric model.

Using context. We found that several objects in indoor
images are hard to detect because of clutter and heavy oc-
clusions. Tables and chairs are an example, since they often
occlude each other, like the chair behind the table in Figure
2. However, this problem can be addressed by consider-
ing contextual relationships between objects in a top-down
fashion. Here, we bias the sampler to propose for chairs
around detected tables, as shown in Figure 7. Given a ta-
ble hypothesis (shown in blue), we look for chairs in the
red areas in the Figure, whose size and position is defined
relatively to the table, by making sure that the backrest of



Figure 7. Using context to find chairs around tables. Given a table
hypothesis (seen from above in blue, top left), we propose chairs
around it. We consider the red areas around each side of the table,
and propose a chair centered at each of the yellow dots shown. For
each chair we then briefly sample over its continuous parameters,
and accept it or reject it using the Metropolis-Hastings acceptance
formula. Chairs found with the help of this procedure are shown
above in yellow. Best viewed in color.

Table 1. Room layout error on Hedau and UCB datasets.
no color color state-of-the-art

HEDAU 13.7 12.7 12.8 [14]
UCB 14.2 14.0 18.8 [10]

the chair is facing the table. This allowed us to find the
chairs drawn in yellow in Figure 7, that were missed by in-
ference without context cues. This strategy can easily be
introduced in other cases where contextual cues are strong
hints of where to look to make inference more efficient.

4. Results and discussion

All our experiments were performed on the Hedau
dataset [2] (104 color images) and the UCB dataset [17]
(340 black and white images). We first evaluate the quality
of the room box estimation [2, 7, 10, 11], by comparing the
projection of the estimated room against the ground truth,
where each pixel was labeled according to the surface of
the room box it belongs to. The score is computed as the ra-
tio between the pixels correctly labeled and the total number
of pixels, averaged over the entire dataset. Results in Table
1 show the benefits of using color, which increased perfor-
mance on the two standard data sets. With it, we were able
to exceed available state-of-the-art values.

We then evaluate object recognition, which is more in-
dicative of our goal of full scene understanding. We are
trying to identify eight object classes that belong to two
very distinct categories: frames (doors, windows and pic-
ture frames), and furniture (beds, cabinets, chairs, couches
and tables). We first measure how many objects we cor-
rectly identified for each of the two main categories, even if
there is confusion within the subcategories (e.g. when we
label a table as a couch, or a window as a door) [10]. We
provide precision and recall scores based on this criterion.

Second, we measure the accuracy we achieved within

Table 2. Precision, recall, and subcategory classification accuracy
on the Hedau (left) and UCB (right) datasets.

Furniture p r sc p r sc
no color 50.4 25.8 49.3 35.9 28.6 47.5
color 53.9 35.7 57.3 38.9 32.0 52.5
Del Pero [10] 32.5 20.3 50.0 31.0 20.1 38.0
With chairs p r sc p r sc
no context 53.8 26.2 58.6 37.8 22.0 52.5
context 54.9 28.3 61.3 38.1 22.2 53.4
Frames p r sc p r sc
no color 36.2 33.7 69.6 27.6 37.4 63.3
color 44.9 41.8 69.3 33.3 42.4 63.6
Del Pero [10] 33.1 18.7 70.3 27.7 19.7 60.0

each of the two categories, as the percentage of objects that
were assigned to the correct subcategory. To decide whether
an object was correctly identified, we measure the intersec-
tion between the projection of the estimated object and its
ground truth position [10]. If the intersection is larger than
50% of the union of this two areas, we consider the object as
a correct detection. The ground truth masks used for these
experiments are available on our website1.

We first compare with our previous results on object
recognition [10], where the same furniture and frames cat-
egories are used, except for chairs. For proper comparison,
we do not include chairs when computing precision and re-
call, and evaluate with chairs separately. Also, we consider
beds with headrest and beds without headrest as both part
of the category “bed”. Table 2 shows that we improve on all
measures. We also report the benefits of using color, which
are less evident on the black and white dataset.

In general, there is a trend showing a better precision
for furniture with respect to frames. We explain this differ-
ence by considering that frames are supported by edges and
color only, whereas furniture is detected using a more robust
set of features including geometric context and orientation
maps. Detailed geometry also allows us to improve on sub-
category classification for furniture, as precise topology is
a strong hint for distinguishing among categories such as
couches and tables. Our color model improves precision
and recall for both furniture and frames, as it helps segment
objects from the background and from each other. For furni-
ture, color also improves subcategory recognition indirectly
by improving object geometry fitting. However, in the case
of frames, the geometry is the same for all three types, so
while global precision and recall are improved with color,
distinguishing among the sub-types is not.

When we also consider chairs, precision and subcategory
classification improve, despite the task being harder due to a
larger number of categories (compare row two and row five
in Table 2). However, recall suffers, as chairs are relatively
small and often heavily occluded. Nonetheless, we notice

1http://kobus.ca/research/data/CVPR 13 room



the benefits of using context for proposing, which improves
all measures, and is a promising step towards dealing with
heavy occlusion and scarce image evidence using top-down
information. In the case of the Hedau dataset, context al-
lowed us to identify seven more chairs at the cost of one
false positive. Qualitative results on using context to find
chairs are shown in Figure 7, while full scene reconstruc-
tions are shown in Figure 1, 2 (bottom right), and 8, which
also includes some typical failures.

Discussion. The experimental results confirmed that the
proposed 3D representation indeed has advantages. A very
important one is that variation within instances of an ob-
ject category is reduced because the camera does not con-
tribute to it, and also defining parts relatively to an object’s
size instead of absolute values further reduces the variabil-
ity among classes. Consider for example the table model,
where we do not impose tables to be any particular height,
but the relative amount for the legs part versus the top part
is kept within a small learned range (roughly 92% for the
legs). Interestingly, we found that most part parameters,
such as the leg width ratio, tend to have little variability.
In fact, despite keeping them within a small range, learned
from a small amount of training data, we could detect a va-
riety of tables in the test data, ranging from small coffee
tables (Fig. 8, bottom left) to dining tables (Fig. 7, bot-
tom left). Additionally, since we encode the key structure
of an object, minor variations in the object parts do not nec-
essarily create problems. For example, in Fig. 5 a table is
detected even if the predicted top is too thick (bottom right).

The experiments also showed that the proposed inference
can handle complex 3D models, which introduce a larger
(and unknown) number of variables, without being too sen-
sitive to local optima. This is enabled by the fact that objects
only interact with others in minimal ways via occlusion and
space occupancy constraints. Hence proposing a complex
alternative to a bounding box is like an independent local
part of the inference, unless it changes what is occluded
with what, like switching a block into a table so that chairs
can be tucked underneath. However, truly complex objects,
such as an exuberant indoor plant, will require additional
and potentially quite different approaches.

5. Acknowledgments
This material is based upon work supported by the Na-

tional Science Foundation under Grant No. 0747511.

References
[1] A. Gupta, S. Satkin, A. A. Efros, and M. Hebert. From 3d

scene geometry to human workspace. In CVPR, 2011.
[2] V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial

layout of cluttered rooms. In ICCV, 2009.
[3] V. Hedau, D. Hoiem, and D. Forsyth. Thinking inside the

box: Using appearance models and context based on room
geometry. In ECCV, 2010.

Figure 8. Scene reconstructions (top rows) and failures (bottom
row). As shown from left to right in the bottom row, typical
failures are due to: 1) confusion between object categories (two
couches confused for cabinets), 2) hallucinating objects (the table
“latched” to the texture of the wall and the shelf), 3) a poor camera
estimate from which the algorithm could not recover, 4) poor fits
due to errors in the feature detection process, which mostly occur
in blurry images. Best viewed in color.

[4] V. Hedau, D. Hoiem, and D. Forsyth. Recovering free space
of indoor scenes from a single image. In CVPR, 2012.

[5] D. Hoiem, A. Efros, and M. Hebert. Geometric context from
a single image. In ICCV, 2005.

[6] K. Karsch, V. Hedau, D. Forsyth, and D. Hoiem. Rendering
synthetic objects into legacy photographs. In SIGGRAPH
Asia, 2011.

[7] D. Lee, A. Gupta, M. Hebert, and T. Kanade. Estimating
spatial layout of rooms using volumetric reasoning about ob-
jects and surfaces. In NIPS, 2010.

[8] J. Liebelt and C. Schmid. Multi-view object class detection
with a 3d geometric model. In CVPR, 2010.

[9] R. M. Neal. Probabilistic inference using markov chain
monte carlo methods. Technical report, 1993.

[10] L. D. Pero, J. Bowdish, D. Fried, B. Kermgard, E. Hartley,
and K. Barnard. Bayesian geometric modeling of indoor
scenes. In CVPR, 2012.

[11] L. D. Pero, J. Guan, E. Brau, J. Schlecht, and K. Barnard.
Sampling bedrooms. In CVPR, 2011.

[12] S. Satkin, J. Lin, and M. Hebert. Data-driven scene under-
standing from 3d models. In BMVC, 2012.

[13] J. Schlecht and K. Barnard. Learning models of object struc-
ture. In NIPS, 2009.

[14] A. Schwing, T. Hazan, M. Pollefeys, and U. R. Efficient
structure prediction with latent variables for general graphics
models. In CVPR, 2012.

[15] Z. Tu and S.-C. Zhu. Image segmentation by data-driven
markov chain monte-carlo. IEEE Trans. Patt. Analy. Mach.
Intell., 24(5):657–673, 2002.

[16] Y. Xiang and S. Savarese. Estimating the aspect layout of
object categories. In CVPR, pages 3410–3417, 2012.

[17] S. X. Yu, H. Zhang, and J. Malik. Inferring spatial layout
from a single image via depth-ordered grouping. In POCV,
2008.


