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Abstract

We present a statistical model of aerial images of recre-
ational trails, and a method to infer trail routes in such im-
ages. We learn a set of textons describing the images, and
use them to divide the image into super-pixels represented
by their texton. We then learn, for each texton, the frequency
of generating on-trail and off-trail pixels, and the direction
of trail through on-trail pixels. From these, we derive an
image likelihood function. We combine that with a prior
model of trail length and smoothness, yielding a posterior
distribution for trails, given an image. We search for good
values of this posterior using a novel stochastic variation
of Dijkstra’s algorithm. Our experiments, on trail images
and groundtruth collected in the western continental USA,
show substantial improvement over those of the previous
best trail-finding method.

1. Introduction
Recreational trails like the one shown in Figure 1a rep-

resent a challenge for computer vision. They lack well de-
fined rigid shape, they occupy relatively few pixels in an
aerial image (Fig. 1b), they are surrounded by highly vari-
able clutter, and are frequently obscured by trees. Trails are
usually smaller and more winding than vehicular roads, and
their shapes demand statistical description. Automatic iden-
tification of trails would be useful not only for bikers, hik-
ers, and land managers, but also as a model problem in other
domains that depend on identifying locally-linear structures
in images, such as blood vessels or neurons grown in vitro.

In this paper we present a statistical model describing
trails and trail images, based on a segmentation of images
by textures. The image model uses a set of textons, a
characteristic set of texture elements learned from training
data [26]. For each texton, we learn its probability of gen-
erating on-trail pixels (Fig. 1c), and, when it does so, the
direction in which that trail is oriented (Fig. 1d). Using this
image model, we derive a likelihood function for a trail’s
image (§2.2). That, combined with a simple prior for our
trail model (§2.1), defines a posterior distribution for trails.

(a) (b)

(c) (d)
Figure 1. Example trail (a), trail image (b), and learned charac-
teristics of image textons (c, d). In (c), color indicates the ratio
of frequencies, for each superpixel’s texton label, at which that
texton generates on- and off-trail pixels. In (d), hue and saturation
show the trail direction of each superpixel’s texton, conditioned on
it generating a trail pixel. Hue indicates direction, and saturation
indicates axial concentration. (Best viewed in color.)

In order to infer the route of a latent trail between two
known endpoints, we use a sampling approach to search
this posterior for a good value. Like earlier work in road-
and trail-finding, e.g. [29], we build a graph from the image
evidence, and generate inference proposals as simple paths
in this graph. More specifically, by carefully constructing
the edge weights (§3.1) we produce a graph in which short
paths between nodes tend to have high likelihood in the sta-
tistical model. In §3.2 we present a novel heuristic method,
related to Dijkstra’s algorithm, that uses this inexact dual
relationship to propose independent data-driven route pro-
posals. Using our model to judge among the proposals, we
retain the most probable route as the best one.



1.1. Previous work

Locally-linear structures are found in many problem do-
mains. For example, biomedical researchers and clinicians
need to trace neurons [2, 3] and blood vessels [1]. They
have used a variety of approaches, such as active contours
[21], minimal paths [9], and many other methods. See
[23, 25] for thorough recent reviews. However, there are
substantial differences between trail extraction and vessel
segmentation. Trails tend to be thinner than typical vessels
(our model neglects their width) and they are more often
occluded entirely. In addition, the clutter surrounding trails
tends to be more variable, which motivates our approach
based on textons and superpixels.

Trail-finding shares many characteristics with road-
finding, which has a substantial literature. Reviews of road-
finding literature can be found in [6] and [28]. Bottom-up
approaches using two or three steps are common to many
road-finding applications, going back at least to Fischler et
al. [15]. Statistical approaches are less common, but the
work of Geman and Jedynak [17] is an interesting excep-
tion. They too developed a statistical model of roads and
road images, but assumed more conditional independence
in their image data than we did. Their active testing method
computes an explicit decision tree while tracing a road. In
contrast, each invocation of our quasi-Dijkstra procedure
produces a random path that is essentially one realization
of an implicit decision tree.

To our knowledge, the only vision literature specific
to trail-finding is that of Morris and Barnard [29], who
trace trails via a two-step process comparable to other road-
finders: they assign each image pixel an energy value based
on a Naive Bayes classifier, then search for a path through
the pixel graph that minimizes an energy function employ-
ing both local and global factors. Our approach differs from
theirs in several aspects. First, we base our objective func-
tion on a more comprehensive statistical characterization
of image textures. Second, we incorporate another high-
level step—an intermediate super-pixel segmentation (see
Fig. 2) based on textons, justified by the naivety of indepen-
dent pixel characteristics in this domain. Third, our image
likelihood function uses a statistical model of trail direction
learned for the textons. Fourth, our trail proposal scheme
differs substantially from theirs.

Many road-finding methods are based on solving a dy-
namic programming or shortest path problem in a pixel or
similar lattice. Similarly, our trail proposer finds short, but
not necessarily shortest, paths in the superpixel graph, as a
heuristic method to explore the space of routes between trail
termini. This proposer is implemented by modifying Dijk-
stra’s algorithm to introduce an element of randomness into
its main loop (§3.2), which we believe is a novel approach.

The challenge of characterizing the resulting distribu-
tion of paths or path lengths bears some similarity to the
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Figure 2. Overview of trail-finding steps. We use a bank of ori-
ented filters to generate pixel features, which we use to segment
the image into superpixels of contiguous texture. We generate in-
dependent trail proposals T (i) for i = 1, 2, . . . by searching for
nearly-shortest paths in the superpixel graph, and keep the pro-
posal with the highest posterior measure.

stochastic shortest path problem [5, 10, 31], but the latter
research has more to do with finding an optimal traversal
policy. Results from queueing theory [7, 18, 19] suggest
that many priority queues exhibit a power-law waiting time
like eq. (15), but whether this has implications for graph
traversal is not clear.

There are a few similarities between our approach to
trail-finding and robotic path planning algorithms such as
Rapidly-exploring Random Trees (RRTs) [24] and related
approaches [4, 22]. In each case, a stochastically-built tree
provides a route to a goal point. However, there are signif-
icant differences. With ordinary RRTs, as with other stan-
dard robotic path planning, candidate paths are cleanly par-
titioned into feasible and infeasible categories. That con-
trasts with trails, which are frequently occluded by tree
cover. Also, in robotics, one usually seeks a feasible path
that minimizes a cost function; whereas in the present work,
we want a path that maximizes a probability distribution.

1.2. Data and Problem Definition

We used groundtruth derived from GPS tracks collected
by Morris and Barnard [29] from the Great Divide Moun-
tain Bike Route (GDMBR), which traverses the western
continental United States. This route was partitioned into
trail pieces that each fit into a 2 km square bounding box
aligned north-south. Grayscale aerial imagery surrounding
each trail piece, originating from the US Geological Sur-
vey, was downloaded from Microsoft Research Maps [8].
The result is 1526 trail pieces and images (one trail piece
per image), at a resolution of 1 m/pixel. We pose the infer-
ence problem as follows. Given the image and the endpoints
of the corresponding trail piece, how does the trail connect



those endpoints? We evaluate our answer by computing
how far the highest-posterior route strays from groundtruth.

We represent a trail piece T as a sequence of eight-
connected pixel locations in the image. The number of lo-
cations is denoted |T |. Within T , a subsequence of exactly
50 distinct pixel locations, the trail vertices (two endpoints
and 48 interior vertices), define the trail. All other pixel
locations in T are determined by using Bresenham’s line al-
gorithm [11] between successive trail vertices. When nec-
essary, we use dynamic programming [30] to reduce a se-
quence of route points to the 50-vertex size criterion. In the
case of groundtruth, this introduces negligible distortion.
The 50-vertex requirement is not essential to the model: the
only part that depends upon it is the prior (§2.1). The like-
lihood will work with an arbitrary list of pixel locations, as
long as the path has a well-defined tangent everywhere.

2. Image and trail models
We model the textures of the image using a Gaussian

mixture (GMM). Our features are image brightness, plus
the oriented energy response from twelve Gaussian filter
kernels elongated with length/width ratio of 4, and rotated
with a 15◦ increment. Each kernel has a sigma of 4 pixels
in the narrow direction, which is comparable to the width of
typical paths in our image data.

The 13-dimensional feature vectors are drawn from a se-
lection of on-trail and off-trail pixels, and used to train a
GMM of 100 modes using EM [14]. The intent is to learn
a comprehensive set of texture elements—textons—found
across all input images. Because the oriented Gaussian ker-
nels roughly match the appearance of visible paths, the tex-
tons also tend to cluster trail pixels according to the direc-
tion of trail.

Next we label each image pixel with its most probable
texton (GMM mode). During training, we then learn for
each texton some additional characteristics: the frequen-
cies with which it generates on-trail and off-trail pixels,
and the axial direction (i.e., direction wrapped into the in-
terval [0, π) radians) associated with on-trail pixels. The
former we learn by counting image pixels on-trail and off-
trail in the training data. The latter we model as a von
Mises distribution [27] (an angular distribution) using a
maximum-likelihood (ML) fit of axial directions sampled
from groundtruth trail pixels.

The results of this statistical learning are denoted as fol-
lows. For texton label k, let µk,Σk denote the mean and
covariance of the feature vectors generated by the mode.
Let Q1(k) denote the probability that a randomly-chosen
on-trail pixel has label k. (In other words, it is the probabil-
ity of the label, conditioned upon the pixel’s on-trail status.)
We compute this as a ratio of pixel-counts. Similarly,Q0(k)
is the analogous probability for off-trail pixels of k. When
k does generate an on-trail pixel, its axial direction is mod-

eled by von Mises parameters µk, the expected direction,
and κk, the concentration. We denote the PDF of an axial
von Mises distribution evaluated at angle θ ∈ [0, π) by

fAM(θ;µ, κ) = 2M (2θ; 2µ, κ) , (1)

where M(θ;µ, κ) represents the PDF of an ordinary (ra-
dial) von Mises distribution. The inner factors of two
in (1) cause the distribution to have period π radians, and
the outer factor of 2 is required for normalization. When
the concentration is zero, the distribution is uniform and,
fAM(θ;µ, 0) = π−1. In Fig. 1c, color indicates ratio
Q1(k)/Q0(k), for each pixel’s label k. The directional pa-
rameters are shown in Fig. 1d, where the hue and saturation
vary with parameters µk and κk, respectively.

The texton labels induce a segmentation of the image
into superpixels. A superpixel s is an 8-connected region
of pixels sharing a common label, whose size |s| we limit to
at most 16384 pixels. Maximal connected regions of pixels
that share a common label but exceed that size are parti-
tioned into multiple superpixels by a 128×128 grid. How-
ever, such regions rarely overlap trails. Superpixels tend to
be small (in our data, 99% have area under 500 pixels).

Segmentation is important to our model because it lets
us assume a measure of conditional independence that bal-
ances the competing requirements for a model that is both
realistic and computationally tractable. We have found an
assumption of pixel-wise independence, conditioned solely
on a trail, to be insufficiently realistic to improve upon ear-
lier results. In our dataset, neighboring pixels frequently
have highly-correlated feature vectors because the appear-
ance of on- and off-trail terrain often changes slowly com-
pared to the relatively narrow size of the feature kernels we
have chosen. Yet the model will be intractable unless we
can factor the image likelihood into independent compo-
nents. Segmenting the image by a learned palette of textons
lets us relax our independence assumptions, to respect the
correlations in the imagery, yet still partition the superpixels
into on- and off-trail classes.

2.1. Trail model

Since the trail representation approximates a polygonal
path, it has a well-defined tangent direction at every pixel
location strictly between two trail vertices: let trail pixel q
be between successive vertices vi = [xi, yi]

t and vi+1. The
direction at q is that of unit vector vi+1−vi

‖vi+1−vi‖ . We can also
define a direction at the trail vertices, as a composite of the
directions of the neighboring path edges: at vertex vi with
predecessor and successor vertices vi−1 and vi+1, we define
the direction at vi as that of vector vi−vi−1

‖vi−vi−1‖ + vi+1−vi
‖vi+1−vi‖ .

Trail curvature tends to change gradually, and we model
that prior knowledge by pc(T ), a product of von Mises dis-
tributions on the differences of successive vertex angles at
interior vertices (Fig. 3). This prior lends preference to
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Figure 3. Trail notation used in prior. The successive differences
of angles φ1, φ2, . . . , φN−2 discretely approximate the derivative
of path curvature.

trails that have constant curvature. For a trail T defined
by N = 50 vertices, with interior angles φ1, φ2, . . . , φN−2,
the prior PDF is

pc(T ) =

N−3∏
i=1

M
(
φi − φi+1

2
; 0, κc

)
. (2)

Concentration κc is learned using a ML estimator on the
corresponding angles in the training data.

In addition, we model prior knowledge about a trail’s
polygonal path length `(T ). By construction, each trail
piece extends across a square bounding box Lmin = 1900
meters on a side. The excess, ∆L = `(T ) − Lmin, has
a distribution that is roughly exponential, so we use prior
pL(T ) = λ exp(−λ∆L), for which we estimate λ =
1/E[∆L] from training data. Our overall trail prior is thus

p(T ) = pL(T )pc(T )1/(N−3), (3)

where exponent 1
N−3 compensates for the number of factors

in pc(T ).

2.2. Image likelihood

We develop the likelihood p(I|T ), where I is a grayscale
image surrounding a trail hypothesis, T . We partition I into
superpixels S = {s1, s2, . . . , s|S|}, and further partition S
according to whether a superpixel intersects T . We denote
the superpixels containing trail pixels by S1 = {s ∈ S :
s ∩ T 6= ∅}. Assuming conditional independence of the
superpixels, the likelihood is

p(I|T ) =
∏
s∈S

p(Ds|T ) =
∏

s∈S\S1

l0(s) ·
∏
s∈S1

l1(s;T ), (4)

in which Ds represents the features of superpixel s, l0(s)
represents the likelihood of Ds in a off-trail region, and
l1(s;T ) represents the likelihood of Ds when it intersects
one or more pixels of T .

Observe that product
∏
s∈S l0(s) is independent of the

trail hypothesis T . Hence we can cancel the contribution of
the numerous off-trail superpixels:

p(I|T ) ∝
∏
s∈S\S1

l0(s) ·
∏
s∈S1

l1(s;T )∏
s∈S l0(s)

=
∏
s∈S1

l1(s;T )

l0(s)
.

(5)
We now derive the likelihood functions in (5). In both l0

and l1, for each pixel we will account for three character-
istics found there: the pixel’s features as conditioned by its

texton label, the pixel’s label as conditioned by trail overlap,
and the pixel’s label as conditioned by trail directionality. In
order to make the numerator and denominator of (5) share
a consistent measure, we must include all three factors at
each pixel.

We begin with likelihood l0(s) of the image data in off-
trail superpixel s. Let q be any pixel in s, and let c(q) and
c(s) respectively denote the texton label of q and the texton
label common to all pixels of s. We assume independence
of pixel data, given a common labeling:

l0(s) = p(Ds | s occurs off-trail) (6)

=
∏
q∈s
N
(
Dq ; µc(s),Σc(s)

)
·Q0(c(s)) · π−1. (7)

Here Dq represents the feature vector at q, and
N (Dq ;µc(s),Σc(s)) is the multivariate normal PDF. The
factor π−1 accounts for the noninformative directionality
of the texture in s.

When s intersects T at pixel q, we assess the likelihood
of the directional appearance of Dq by assuming uniform
prior distributions of texture direction and trail direction, in
which case,

p(direction of Dq |T ) = p(θT (q) | direction of c(s)). (8)

Then the likelihood of image data within superpixel s is a
product of the likelihoods of its on-trail and off-trail pixels:

l1(s;T ) =
∏

q1∈s∩T

(
N
(
Dq1 ; µc(s),Σc(s)

)
·Q1(c(s)) · fAM

(
θT (q1);µc(s), κc(s)

) )
·
∏

q0∈s\T

(
N
(
Dq0 ; µc(s),Σc(s)

)
·Q0(c(s)) · π−1

)
(9)

=
(
Q1(c(s)) · fAM

(
θT (s);µc(s), κc(s)

))|s∩T |
·
(
π−1Q0(c(s))

)|s\T |
·
∏
q∈s
N
(
Dq ;µc(s),Σc(s)

)
. (10)

We combine (7) and (10) into (5), canceling the off-trail
pixel factors in the numerator and all the normal densities:

p(I|T ) ∝
∏
q∈T

(
Q1(c(q))

Q0(c(q))
·
fAM

(
θT (q);µc(q), κc(q)

)
π−1

)
.

(11)

Intuitively the two kinds of ratios in this product can be
interpreted as a logical conjunction: not only should the
image textures along T “look like” trail (i.e., large ratios
Q1/Q0), but also the directions learned for those textons
should align with T (i.e., large ratios fAM (θT ) /π−1).



Figure 4. Modeling superpixel geometry. The geometric relation-
ship of superpixels s and s′ is modeled by an angular distribution.
We model a random trail through both s and s′ by a straight line
from a border pixel of s (yellow blocks) to a border pixel of s′

(blue blocks), shown in (a). We take a random sample of 50 such
axes, shown in (b), to which we fit an axial von Mises.

s
s′

(a) (b)

3. Inference
Using the prior (3) and likelihood (11), we define poste-

rior distribution

p(T |I) =
1

Z
p(T )p(I|T )1/|T | (12)

in which exponent 1/|T | makes the likelihood neutral with
respect to trail size, and normalization factor Z is left un-
known. We would like to use eq. (12) for inferring an un-
known trail T , given image I and the endpoints of T . Exact
maximization seems intractable, since in general the solu-
tion to the Longest Acyclic Path problem is NP-hard [16].
Instead, we explore the space of trails that bridge between
two known endpoints by searching for short paths in a care-
fully weighted graph of superpixels (an approximately dual
problem). We use a variation of Dijkstra’s algorithm to find
the shortest and nearly-shortest paths—trail proposals—in
this weighted graph of superpixels. Then we use eq. (12) to
select the most probable proposal.

3.1. Edge weights in superpixel graph

Our proposer is inspired by Morris and Barnard [29],
who also computed shortest paths for trail inference. We
use their same basic idea: an edge that is highly likely to
be on a trail should get low weight. However, we face two
technical challenges when translating the likelihood ratio of
(11) to edge weights: we require an inverse relationship that
remains finite, and we lack the directional factor fAM (θT )
(i.e., while creating a trail proposal, we cannot yet know its
tangent).

In place of factor fAM (θT ), we compute a statistical
approximation based on superpixel geometry. Any graph
path comprising the edge from s to s′ corresponds to a trail
proposal whose geometry overlaps both superpixels, so we
model a random trail proposal connecting s and s′ (Fig. 4).
We compute the ML parameters (µs,s′ , κs,s′) of an axial
von Mises distribution of a random straight track traversing
both s and s′. Then we compare this geometric model with
the directional model learned for texton c(s′). If the two
distributions are similar, it is more likely that a path enter-
ing s would extend into s′. The Bhattacharyya kernel [20]

kB lets us compare the distributions in closed form, and
so we treat its numerical value b(s, s′) as a proxy for ratio
fAM (θT ) /π−1 appearing in (11):

b(s, s′) = kB([µc(s′), κc(s′)]
t, [µs,s′ , κs,s′ ]

t). (13)

Edge weight w must have an inverse relationship with
local likelihood ratio ρ = Q1

Q0
b that is well-behaved (i.e.,

w can never be too large), because good proposals some-
times traverse edges through regions of unlikely-appearing
texture, where ρ is very small. Thus w ∝ ρ−1 would work
poorly. To set an upper bound on weights, we instead use
a relationship like w ∼ (1 + ρ)−1. Weight w also needs a
direct relationship with superpixel size, otherwise the pro-
poser would have a bias in favor of large superpixels. Thus
we set w ∝ |s′|, area of s′ in pixels. (It is better to scale w
by |s′| than |s′|1/2, because superpixels tend to be narrow.)

In order to balance the sizes of the weights in image re-
gions likely and unlikely to be trail, we include parameters
α and γ, which are trained by grid search so as to mini-
mize Hausdorff distance between groundtruth and the short-
est path in the superpixel graph. Thus our choice for edge
weight between superpixels s and s′ is

w(s, s′) =
|s′|

1 + γ
(
Q1(c(s′))
Q0(c(s′))

· b(s, s′)
)α . (14)

3.2. Sampling short paths

We have developed a variation on Dijkstra’s algorithm
to sample paths in this weighted graph that are short but
not necessarily the shortest. As typically presented (e.g.,
in [12]), each iteration of Dijkstra’s algorithm performs an
EXTRACT-MIN operation on a priority queue of vertices,
prioritized by distance. Our idea is to alter the priority
queue to support an EXTRACT-NEAR-MIN operation that,
at each iteration, extracts a vertex (superpixel) selected ran-
domly, with a preference for vertices of smaller distance.
For a vertex s with distance d(s) in the queue, its probabil-
ity of being the next vertex removed from the queue U is
given by a power law,

Pr(s will be drawn next) =
d(s)−β∑
u∈U d(u)−β

, (15)

where β = 1.5 was chosen empirically. The value of β
affects the dispersion of the sampled paths.

We pay no time-complexity penalty for this approach.
The stochastic priority queue is implemented with a red-
black tree that stores non-normalized probability mass
d(s)−β with entry s, and maintains at each tree node a
sum of all subtree nodes’ probability masses. Thus we
can perform an EXTRACT-NEAR-MIN operation in time
O(log |U |), where |U | is the number of vertices (superpix-
els) in the priority queue. Since the superpixel graph is pla-



(a) (b) (c) (d)
Figure 5. Examples of intermediate and final results of infer-
ence process: (a) the groundtruth pixel footprint of superpixels
of a typical trail piece, i.e., all pixels of the superpixels touching
groundtruth; (b) 200 short paths generated by the quasi-Dijkstra
method; (c) shortest path found by Dijkstra’s algorithm; (d) short
path approximately maximizing eq. (12). (Compare with Fig. 1.)

nar, sampling a short path with this implementation uses
time O(|S| log |S|).

To generate a trail proposal, we use either this quasi-
Dijkstra algorithm, or the unmodified Dijkstra’s algorithm,
to find a short path P in the superpixel graph bridging
between endpoints. P is a simple path of superpixels,
P = (si1 , si2 , . . . , si|P |), where i1, i2, . . . , i|P | are the in-
dices of the chosen superpixels.

Because our prior model requires a polygonal path with
a fixed number of vertices, we take some additional steps
to reduce the superpixel path into a polygonal path of pix-
els. Qualitatively, these steps have little effect on the path.
First we compute the path’s pixel footprint FP =

⋃|P |
j=1 sij .

Fig. 5a shows an example footprint. Next we reduce FP to
a polygonal path P ′ by computing an ordinary shortest path
in the pixel graph, using 8-way adjacency and Euclidean
distance. Alternatively we could have used a medial-axis
algorithm, but FP is almost always thin enough that the dif-
ference would be negligible. Finally we reduce the number
of vertices to 50, using a straightforward dynamic program-
ming algorithm [30].

4. Results and Conclusions
We use the Hausdorff distance metric between

groundtruth and inferred path for evaluation; a per-
fectly inferred path will have a distance of zero. Given
a fixed error threshold, Fig. 6 shows the success rate of
three methods of generating and assessing trail proposals.
Alternatively, this plot can be viewed as the CDF of the
Hausdorff error for a randomly selected trail. The top
curve, labeled “QD-MAP,” denotes the success rate when
we generate 200 trail proposals by the quasi-Dijkstra
procedure described above, and keep the proposal with

Table 1. Comparison of results for GDMBR trail inference. Er-
ror metric is Hausdorff distance between groundtruth and infer-
ence. NB-Sampler is the naive-Bayes classifier and sampler of
[29]. Other labels are as described in §4.

Median Mean Success rate,
err. [m] err. [m] err. < 50 m

NB-Sampler - 118± 8 60%
Shortest path 40.5± 3.5 137± 13 54%± 2%
QD-ML 28.9± 1.8 105± 10 67%± 2%
QD-MAP 27.0± 1.4 96± 12 68%± 2%
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Figure 6. Cumulative distribution of Hausdorff distance between
groundtruth and best route inference, i.e., success rate vs. error
threshold. QD-MAP shows the success rate of quasi-Dijkstra pro-
posals that maximize eq. (12). QD-ML shows the success rate of
quasi-Dijkstra proposals that maximize image likelihood. We also
show the success rate of the shortest path in the superpixel graph.

maximum posterior probability as measured by (12).
Empirical testing suggests 200 proposals is enough to
converge to a good inference.

For comparison, we present two variations on this
method. The curve labeled “QD-ML” shows the success
rate of the quasi-Dijkstra path proposal that maximizes im-
age likelihood (eq. (11) with p(T ) replaced by unity). The
lowest curve shows the success rate of the shortest path in
the superpixel graph. The latter’s poor performance clearly
shows that the primal-dual relationship suggested for the su-
perpixel graph is only approximate: the best inferences are
often graph paths that are short but not shortest.

The gap between MAP and ML curves shows the bene-
fit of the prior model (§2.1). The value of the prior is also
evident when inference fails. If we fix the error threshold at
50 meters, the success rate for QD-MAP is 68%, but among
the failure cases, in 385 out of 481 images (80%) the fail-
ing inferred trails have a lower posterior measure than that
of groundtruth. One could hope that a more sophisticated
proposer might recover some of these trails. In contrast,
among the QD-ML failure cases, 322 out of 508 images
(63%) have an image likelihood given the failed inference
that exceeds the image likelihood when given groundtruth.
Hence a maximum-likelihood approach to inference will
necessarily fail in all those cases, even if the proposer were
an oracle. This sort of confusion points to the limitations of
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Figure 7. Example failures. Groundtruth is shown in blue, infer-
ence is purple. Inference (a) is too steep to be plausible, indicating
that elevation data would improve results. Example (b) suggests
that inference could be improved by narrowing the search space to
retain partially-correct results. Inference (c) shows that when im-
age evidence is scant or contradictory, the problem is ambiguous.

our likelihood model along the lines analyzed by Yuille and
Coughlan [13, 32].

We compare our results to those of Morris and Barnard
in Table 1. They proposed a 50 meter Hausdorff distance as
a standard threshold of success, and presented three related
methods of trail inference. Their most successful method
was a sampling approach to minimize an energy function,
which achieved errors of 50 m or less for 60% of their test
trails, out of 500 trail images. We were not able to use the
same 500 trail images, but the trail pieces we used were
drawn from the same route (the GDMBR) and our images
come from the same USGS corpus of imagery. Our method
outperforms the sampling approach with a higher rate of
successful inference and lower mean error. Intervals on our
results represent 95% confidence, generated using 14-way
cross validation.

We show some examples of failed inference in Fig. 7.
Because our approach does not use elevation data, trail
switchbacks are often missed, and our prior model cannot
reject proposals such as that of Fig. 7a, a route that is too
steep to be a plausible trail. Our proposer generates inde-
pendent routes, and thus lacks the ability to improve faulty
sections of a nearly-correct route, like that shown in Fig. 7b.
Finally, the trail-finding problem itself is ambiguous when
image evidence suggests more than one route between the
endpoints, as in Fig. 7c. Sample successes are shown in
Fig. 8. We note in conclusion that one of the advantages
of a statistical approach is that the models are amenable to
refinement. As we continue to improve our model and in-
ference procedures, we look forward to better results.
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