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Abstract
We consider linear dynamical systems, particu-
larly coupled linear oscillators, where the param-
eters represent meaningful values in a domain
theory, and thus learning what affects them con-
tributes to explanation. Rather than allow pertur-
bations of latent states, we assume that temporal
variation beyond noise is explained by parame-
ter drift, and variation across coupled systems is
a function of moderating variables. This change
in model structure reduces opportunities for ef-
ficient inference, and we propose sampling pro-
cedures to learn and fit the models. We test our
approach on a real dataset of self-recalled emo-
tional experience measurements of heterosexual
couples engaged in a conversation about a po-
tentially emotional topic, with body mass index
(BMI) being considered as a moderator. We eval-
uate several models on their ability to predict fu-
ture conversation dynamics (the last 20% of the
data for each test couple), with shared parameters
being learned using held out data. We validate
the hypothesis that BMI affects the conversation
dynamic in the experimentally chosen topic.

1. Introduction
In many standard applications of linear dynamical systems
(LDS), such as tracking an object moving under Newton’s
laws, the parameters are known, and the latent states (e.g.,
the true object position) are the target of inference. Fur-
ther, it may make sense that the latent state is subject to
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perturbations (e.g., the object is buffeted by air), in which
case it is convenient to model the latent state with Gaussian
perturbations at each time step. In other applications, the
parameters need to be inferred for a predictive task. In this
case, the trade-offs in parameter, latent state, and observa-
tion errors might be optimized for prediction, and the rela-
tion between them may not matter so much. By contrast,
for the kind of applications considered here, the parame-
ters correspond directly to quantities in a scientific model,
and therefore understanding what affects those parameters
across individual examples is important. Here it makes less
sense to allow latent state noise, especially when observa-
tion noise is substantive. Further, given that we consider the
model itself as indicative of individuals and their circum-
stances, this suggests that temporal variation beyond noise
processes might be better explained by changes (drift) in
the model. Hence, in this paper we force all variation be-
yond observation noise to be the result of deterministic pro-
cess with stochastic parameters.

We take as a motivating example a class of social psycho-
logical models aimed at explaining the emotional dynam-
ics of interacting couples. Growing evidence suggests that
coupled linear oscillators (CLOs), a subset of LDS models,
are well-suited to model the oscillatory dynamics of emo-
tional interactions. However, most work to-date (Boker &
Ghisletta, 2001; Boker et al., 2004; Chow et al., 2005; But-
ner et al., 2005; Boker & Laurenceau, 2006; Finan et al.,
2010; Ferrer & Steele, 2011; Steele & Ferrer, 2011; Fer-
rer & Helm, 2013) has been limited to fitting the data us-
ing regression methods that rely on necessarily noisy es-
timates of first and second derivatives of the observations.
While convenient to implement using common statistical
packages, there are serious limitations to this regression-
based approach underlying all CLO modeling work in the
social sciences domain. These limitations include the fol-
lowing: 1) there is a fundamental disconnect between error
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as explained by the model and error that is minimized dur-
ing regression; 2) directly estimating derivatives from noisy
data leads to poor estimates; LDS derivatives are better ap-
plied to estimated latent states; 3) these regression models
do not fit initial states, which if used at all, are taken from
the data points or their mean; 4) there is no natural exten-
sion to a multivariate observation case; and finally 5) these
regression approaches are only evaluated based on model
residual error reduction rather than on predictive power.

In this work, we develop a generative Bayesian model and
inference algorithms for LDS models (instantiated in the
case of CLO models) that avoids the above limitations. We
then extend the models in two ways. First, we consider
that the parameters are a function of moderating variables.
Second, we allow the model parameters to drift under a
Gaussian process. These extensions, together with the re-
quirement of flexible models with multiple latent variables,
rule out analytic solutions, so we develop sampling-based
inference approaches for learning and fitting these models.

Experimental domain. In the particular application show-
cased here, the latent variables are the emotional states of
romantically involved male-female partners during a con-
versation. Available temporal observations range from
physiological measurements to self-reported ratings on
emotional state (see Section 6); we chose the latter for our
experiments. Potential moderators include body mass in-
dex (BMI) for each participant, which we used for the ex-
periments reported here. One hypothesis driving the data
collection supposes that BMI influences conversation dy-
namics when the topic of discussion is related to health.

We consider that all data is generated for each participant
independently, conditioned on their latent emotion vari-
able. As an LDS, the new states for both partners are a
linear function of the previous states of both. As we are in-
terested in the nature of the dynamic process, we choose
to make the state variables deterministic (no latent state
noise). The parameters for the LDS may be individualis-
tic (which over-fits), shared, or a function of moderators
such as BMI, reflected by the original experiment design.
Each of these models are combined with parameter drift
via a Gaussian process (e.g., increasing anger is reflected
in changes in reactions to one’s partner).

Contributions. 1). We introduce Gaussian process param-
eter drift in coupled LDS models, making it possible for
model variation within a system over time to be accounted
for by model parameter changes rather than latent state per-
turbations. We develop a Gibbs sampler for inference in
this model. 2). We similarly introduce parameter moder-
ation to explain coupled LDS data over multiple instances
(e.g., a number of couples), for situations where parame-
ters, as signatures of dynamic behavior, can be linked to
other data such as health related outcomes (e.g., BMI). 3).

We detail a multilevel cross validation scheme in which
shared parameters are learned and then used to predict near
future interactions in held-out couples. 4). We introduce a
new domain for predictive modeling, namely interpersonal
emotional processes and similar sub-areas of social psy-
chology. This domain has very challenging data and mod-
ern machine learning methods for building predictive and
explanatory models has had limited impact so far.

2. Related work
Finding good parameter values for ordinary differential
equations (ODE) from observables has significant history.
For example, researchers (Bard, 1973; Varah, 1982; Anger,
1990; Li et al., 2005) have looked at iterating over parame-
ter sets, integrating the ODE for each set. To reduce the
computational cost, smoothing estimators of ODEs have
been proposed (Varah, 1982; Ramsay et al., 2007; Liang
& Wu, 2008; Dattner & Klaassen, 2013; Hall & Ma, 2013)
that do not require solving the ODE numerically. However,
they need reliable estimates of the derivatives of the states,
which is problematic with noisy and sparse data.

In the domain of biomedical systems, Gelman et al. pro-
pose inferring parameters of the differential equation of
pharmacokinetic (PK) models using Bayesian posterior
simulation (1996). They apply priors based on scientific
theories and estimate the distribution of individual charac-
teristics. Reviews of statistical and computational work in
PK models are provided by Davidian and Giltinan (2003)
and Pillai et al. (2005). Li et al. introduce coupling between
the variables for this domain (2004) and fit parameters us-
ing a two step iterative process. They also model paramet-
ric change over time but with simple linear or piecewise
constant models. Subsequently, Li et al. and Yu et al. intro-
duce an MCMC sampling approach for fitting the parame-
ters (2007; 2008). Like our proposed method, all of these
involve parameter fitting and hierarchical Bayesian model-
ing. However, the specifics of the domain allow for spe-
cial relationships between variables and require only first
derivatives, facts which are exploited for inference. Here
we develop an approach for arbitrary LDS.

Calderhead et al. propose a Bayesian statistical approach
to treat the hidden state variables as random variables
with Gaussian process (GP) priors (2009). This ap-
proach replaces expensive ODE integration with closed-
form marginalization over the derivative states. Chkrebtii
et al. extended this idea to a general methodology for gen-
eral systems of differential equations (2013). This is further
improved by Dondelinger et al. who sample from the joint
distribution of the ODE parameters and GP hyperparame-
ters (2013). Wang and Barber improved the GP-based ODE
models by directly linking the state derivative information
with the system observations (2014). In general, this body
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of work focuses on using GPs for hidden state variation in-
stead of parameter variation as we propose.

Gaussian processes have also been used to model the latent
parameters of differential equations (Lawrence et al., 2006;
Titsias et al., 2008; Gao et al., 2008) with particular forms.
In system biology, Lawrence et al. treat the concentration
of a transcription factor as a latent function with a Gaussian
process prior (2006). When the production rate depends
linearly on the transcription factor, parameter estimation is
exact and tractable. When the dependence is not linear,
they use the functional gradient of the likelihood and prior
to learn the maximum a posteriori (MAP) solution for the
transcription factors and other hyper-parameters by MAP-
Laplace approximation. In a later work, Titsias et al. de-
veloped an efficient Markov Chain Monte Carlo (MCMC)
sampling approach with novel proposal distribution to find
the MAP estimate of the model parameters (2008). In these
models, time-varying parameters are confined to the con-
stant coefficient of a linear ODE, whereas our model allows
all coefficients to drift. These works inspired the Latent
Force Models (LFMs) for differential equations (Alvarez
et al., 2009) but coupling is not considered. Significant
work has been done on modeling phase shift, character-
ized by inferring discontinuous changes in model parame-
ters (e.g., (S. M. Oh et al., 2008; A. S. Willsky et al., 2009)).
In contrast, we study progressively and smoothly changing
parameters.

In summary, many elements of our work are shared with
prior efforts. However, the proposed parameter drift model
for a general LDS and the associated Gibbs sampler are
new, as is the particular approach to integrating moderation.

3. Model
We represent each person’s hidden emotional state as a real
function of time. The observables are self-reported rat-
ings of the person’s hidden emotional state over time. Let
(xat , x

b
t) ∈ R2 be a couple’s hidden emotional state at time

t ≥ 1. Higher values of xat and xbt represent positive emo-
tion, while lower values represent negative emotion. Be-
cause interactions tend to be asymmetric, the ordering of
couples matters. For example, in the case of heterosexual
couples used in our experiments, xat and xbt denote the male
and female partner, respectively. Similarly, parent/child re-
lationships would also be identifiable and asymmetric (our
models are easily extended to more than two people).

For an interacting couple, we model their emotional dy-
namics as a coupled oscillator system, in which an indi-
vidual’s future emotional state is influenced by her current
state and the emotional state of her partner. The param-
eters of this model are different for each couple, but al-
lowing them to be completely free (baseline model CLO-

MLE) leads to over-fitting. Instead, for most models con-
sidered, the parameters come from a common distribution,
with the mean potentially being a function of moderators
(here, BMI). Finally, we explore a model that allows pa-
rameters to drift smoothly over time.

3.1. Coupled Linear Oscillator

Damped linear oscillator models have been used to rep-
resent the regulatory processes of emotion oscillations of
an individual (Chow et al., 2005). A coupled linear os-
cillator (CLO) is an extension of the damped linear model
to model interactions between two oscillators. It is useful
to model both intra- and inter-personal characteristics, in-
cluding frequency, damping, and coupling (Boker & Lau-
renceau, 2007). In a CLO system, the accelerations of a
pair of oscillators are a function of their velocities and po-
sitions. Specifically, if we let xat and xbt be the positions of
the oscillators at time t, their dynamics are defined by the
second-order differential equation

ẍat = faxat + daẋat + ca(xbt − xat ) (1)

ẍbt = fbxbt + dbẋbt + cb(xbt − xat ). (2)

Here, ẍt = d2x
dt2 denotes acceleration and ẋt = dx

dt denotes
velocity at time t, fa and fb are the oscillation frequencies,
da and db are the linear damping coefficients, and ca and
cb are the coupling terms between the oscillators.

3.2. State space representation

A system that is defined by a set of differential equations
can be represented in state space (Nise, 2010). Typically,
a deterministic continuous-time dynamic system is repre-
sented by the following equations:

ẋt = Axt + But (3)
yt = Cxt + Dut, (4)

where x is the vector containing the system’s state vari-
ables. Given a state xt1 at time t1, the future state xt at any
time t > t1 is completely determined by the system matrix
A and the optional input matrix B and input/control vector
ut. The output vector y is determined by the output matrix
C and optional feed-forward matrix D and ut. In our case,
both B and D are zero matrices.

A stochastic discrete-time dynamic system is defined by a
stochastic process in which the value of xi at time ti is
stochastically determined by the value of xi−1 at time ti−1:

xi = g(ui,xi−1, εi) (5)
yi = h(xi,ui, δi), (6)

where g is the transition model, h is the observation model,
εi is the system noise at time ti and δi is the observation
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noise at time ti (Murphy, 2012). State xi can be obtained
from xi−1 by numerical integration, using the derivative of
x defined in equation (3) with a certain step size ∆t. We
use zero system noise (εt), so that variance is explained
either by observation noise or parameter drift, in support of
domain theory.

We let the state vector xt = (xat , x
b
t , ẋ

a
t , ẋ

b
t )T represent the

emotion states and their derivatives with respect to time for
both partners, where (xat , x

b
t ) ∈ R2. The derivative of the

state vector is ẋt = (ẋat , ẋ
b
t , ẍ

a
t , ẍ

b
t ). Using (3) to represent

equations (1) and (2) results in the state equation:
ẋat
ẋbt
ẍat
ẍbt

 =


0 0 1 0
0 0 0 1

fa − ca ca da 0
cb fb − cb 0 db



xat
xbt
ẋat
ẋbt

 . (7)

Given the initial states (xat1 , x
b
t1 , ẋ

a
t1 , ẋ

b
t1) we can compute

the state at any time t > t1 by evolving the differential
equation forward in time.

The observations consist of self-rated subjective feelings,
which we model as the latent emotional state perturbed by
Gaussian noise. Let the output vector y = (yat , y

b
t ) be the

observed state; in the case of univariate output per individ-
ual, the observation model (eq. 6) then becomes

(
yat
ybt

)
=

(
1 0 0 0
0 1 0 0

)
xat
xbt
ẋat
ẋbt

+

(
δat
δbt

)
, (8)

where δat , δ
b
t ∼ N (0, σ2

o). We can easily extend the output
vector to be multivariate by modifying the output matrix C
and utilizing a non-zero feed-forward matrix D to include
other components of observed emotion states, such as heart
rate and facial expressions.

3.3. Bayesian hierarchical model

We develop a Bayesian hierarchical model which allows us
to estimate the group variability to provide a prior distri-
bution for individuals. While we expect different couples
to have different emotional dynamics, in similar social set-
tings couples might exhibit common patterns, such as the
frequencies of the oscillations. Furthermore, it has been
shown that health indicators such as body weight can influ-
ence emotion interaction patterns in couples (Reed et al.,
2015). Therefore, we define each couple’s CLO parame-
ters as arising from a linear function of both partners’ body
mass index (BMI) with Gaussian noise. This introduces
dependence between couples by sharing linear coefficients.
Specifically, let θi = (fai , f

b
i , d

a
i , d

b
i , c

a
i , c

b
i ) be the param-

eters for couple i, and let (ωa
i , ω

b
i ) be their BMI values,

then each element θij is given by:

θij = µij + εj ,

where
µij = αj + βj · ωi + γj · ω̂i (9)

and ωi = (ωa
i + ωb

i )/2; ω̂i = ωb
i − ωa

i ; εj ∼ N (0, σ2
j ).

Here, αj , βj , and γj are the shared coefficients of the BMI
values and σ2

j is the variance for the j-th parameter among
the couples. We define a group-shared CLO model as at
least one of the CLO parameter having a non-zero α co-
efficient. By using different combinations of non-zero β
and γ on different parameters, we can explore various CLO
models with group-shared and BMI-dependent parameters.
For example, we can allow the same gender of all the cou-
ples to share the same prior distribution for the damping
value and let each person to have different value for fre-
quency and coupling parameters. We will later show that
the prior on θj of all the couples forms a Bayesian lin-
ear regression model and can be sampled by using Gibbs-
sampling (section 4). We let the joint prior distribution of
qj = (αj , βj , γj) and σ2

j be the Normal-Inverse-Gamma
(NIG), i.e., (qj , σ

2
j ) ∼ NIG(µ0,Σ0, a0, b0), and treat

each (qj , σ
2
j ) as independent. Figure 1 shows the graphical

model for group-shared CLO model with BMI-dependent
means and couple-shared variance.

yi1 yi2 yit

N

xi1 xi2 xit

θi

ωi
µi

α β γ

σ

a0, b0µ0, Σ0

φx1

Figure 1. A graphical model of the state space model for the jth
parameter (index j is omitted for clarity) with BMI-dependent
Gaussian prior. Here, the jth CLO parameter θij for couple i is a
random variable generated from distribution N (µij , σ

2
j ). Group-

shared BMI-coefficients αj , βj and γj and shared variance σ2
j

are random variables generated from the joint prior distributions
(αj , βj , γj , σ

2
j ) ∼ NIG(µ0,Σ0, a0, b0). φx1 represents a mul-

tivariate Gaussian prior for the initial state.

3.4. Time-varying CLO parameters

By letting the CLO parameters change over time, we can
model emotion dynamics in longer period of social interac-
tions where the interaction dynamics vary over time. Re-
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call that the elements of A are the CLO parameters. In a
system with fixed dynamics, the state matrix A in equa-
tion 3 are constants. By letting A change over time, we
can model a system with changing dynamics. To ensure
smooth changes of the dynamics, we define a Gaussian pro-
cess prior over sequences of CLO parameters.

Gaussian process prior A Gaussian process (GP) is a
generalization of the Gaussian distribution that defines a
probability distribution over the space of of continuous
functions (Rasmussen & Williams, 2006). A Gaussian pro-
cess is specified by a mean function m(t) and a covariance
function k(t, t′). If a random function f : R → R is GP-
distributed, then every finite subset (f(t1), . . . , f(tJ)) ∼
N ((m(t1), . . . ,m(tJ)),Kij = k(ti, tj))). Let θ(t) =
(fb(t), fa(t), db(t), da(t), cb(t), ca(t)) be the CLO pa-
rameters for some couple as a function of time; for simplic-
ity we omit the couple’s subscript. Each parameter θj(t) is
an independent random function with distribution

θj(t) ∼ GP(mj(t), kj(t, t
′)). (10)

We define the mean mj(t) = µj as defined in equa-
tion (9). The covariance is the squared-exponential func-
tion kj(t, t′) = σ2

j exp(− (t−t′)2
2s2j

), which generates smooth
functions. It is defined by two parameters that are shared
across couples: a variance parameter σ2

j that controls the
overall scale of variations, and a scale parameter sj , which
controls the smoothness. The graphical model with Gaus-
sian process prior on the parameters θi is shown in Fig. 2.

yi1 yi2 yit

N

xi1 xi2 xit

θi,1..Ti

ωi
µi

α, β, γ σ s

as, bsµ0, Σ0, a0, b0

φx1

Figure 2. A graphical model of the state space model for the jth
parameter (index j is omitted for clarity) with Gaussian process
prior on the CLO parameters θi,1..Ti , where Ti is the time-length
of couple i. The mean function m is defined byµi and covariance
function k(t, t′) is defined by the shared signal variance σ and
scale parameters s. Here, sj ∼ IG(asj , bsj) where sj is the
length-scale of the jth CLO parameter.

3.5. Likelihood

Given the hidden emotional states of a couple and the val-
ues of its CLO parameters, the observed states at each dis-
crete time t are conditionally independent. Since the hid-
den emotional states are deterministically determined by
the CLO parameters and the initial values, for each couple
i, the likelihood of the observed data yi,1:Ti conditioned on
the CLO parameters θi and the initial state xi,1 is given by:

p(yi,1:Ti |xi,1,θi,1:Ti) = p(yi,1|xi,1)

Ti∏
t=2

p(yi,t|xi,1,θi,t),

(11)
where yi,1|xi,1 ∼ N (xi,1, σ

2
o), and yi,t|xi,1,θi,t ∼

N (f(xi,1,θi,t, t), σ
2
o), where σ2

o is the variance in the ob-
servations. The value of function f is the numerical solu-
tion of the ODE defined by the state equation 7. Since all
the couples are conditionally independent given the model
parameters, the likelihood of all the couples is:

p(Y1:T |X1,Θ) =

N∏
i=1

(
p(yi,t=1|xi,1)

Ti∏
t=2

p(yi,t|xi,1,θi,t)

)
.

(12)

4. Parameter learning
Let Q = {q1,q2, . . . ,q6} be the set of BMI coefficients
for all six model parameters. When the CLO parameters
Θ do not change over time, we learn the group-shared
Q and σ by drawing samples from the joint distribution
p(Q,σ,Θ,X1|Y1:T ) under the hierarchical model using
MH-Gibbs sampling (Alg. 1). For the time-varying CLO
model, we also learn the length-scale parameter s by draw-
ing samples from p(Q,σ, s,Θ,X1|Y1:T ) (Alg. 2).

Algorithm 1 Sample procedure from p(Q,σ,Θ,X1|Y)

Initialize Θ(1), X
(1)
1 , Q(1) and σ(1).

repeat
X

(m)
1 ∼ p(X1|Θ(m−1),Q(m−1),σ(m−1),Y)

Θ(m) ∼ p(Θ|Q(m−1), σ(m−1),X
(m)
1 ,Y)

{Q(m),σ(m)} ∼ p(Q,σ|Θ(m),X
(m)
1 ,Y)

until p(Θ,Q,σ,X1|Y) converges

For the model with fixed CLO parameters, we use random-
walk Metropolis-Hastings (MH) to sample the initial states
of each couple from p(X1|Θ,Y) and p(Θ|Q,σ,X1,Y).
For the model with time-varying parameters, we use MH
to sample Θ with a proposal distribution constructed from
a set of control points of the GP process as proposed
by (Titsias et al., 2008). For updating group-shared pa-
rameters Q and σ, we use Gibbs to sample from joint
posterior distribution p(Q,σ|Θ) and p(Q,σ|Θ, s) (in the
time-varying case) by using a conjugate NIG prior dis-
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tribution on p(Q,σ). Furthermore, we use Hamiltonian
Monte Carlo (also called Hybrid Monte Carlo) (HMC)
sampling technique (Duane et al., 1987; Neal, 1997) to
sample the scale parameters s from its conditional pos-
terior p(s|Q,σ,Θ) ∝ p(s)p(Θ|s,Q,σ) where p(s) =
IG(as,bs). Since we have minimal prior knowledge about
how fast the parameters changes over time, we use a vague
Inverse Gamma prior for s by setting both the shape as and
the scale bs of all the six CLO parameters to be 0.001.

Algorithm 2 Sample procedure from p(Q,σ, s,Θ,X1|Y)

Initialize Θ(1), X
(1)
1 , Q(1), σ(1), and s(1).

repeat
X

(m)
1 ∼ p(X1|Θ(m−1),Q(m−1),σ(m−1), s(m−1),Y)

Θ(m) ∼ p(Θ|Q(m−1),σ(m−1), s(m−1),X
(m)
1 ,Y)

{Q(m),σ(m)} ∼ p(Q,σ|Θ(m), s(m−1),X
(m)
1 ,Y)

s(m) ∼ p(s|Q(m),σ(m),Θ(m),X
(m)
1 ,Y)

until p(Θ,Q,σ, s,X1|Y) converges

4.1. Gibbs sampling for Q and σ when θ are constant

In the model with constant CLO parameters, the jth CLO
parameter for the ith couple has Gaussian prior distribution

θij |qj ∼ N (ω>i qj , σ
2
j ), (13)

where ωi = (1, ω̄i, ω̂i)
>. Let θj = (θ1j , θ2j , . . . , θNj)

>

be the jth CLO parameters for all couples; its joint prior is

θj |qj ∼ N (Ωqj , σ
2
j I), (14)

where Ω = (ω1,ω2, . . . ,ωN )>.

The full conditional distribution over BMI weights qj and
noise variance σ2

j is given by standard Bayesian linear re-
gression, with the likelihood in (14) and conjugate prior
(qj , σ

2
j ) ∼ NIG(µ0,Σ0, a0, b0):

qj , σ
2
j |θj ∼ NIG(µ∗,Σ∗, a∗, b∗), (15)

where

µ∗ =
(
Ω>Ω + Σ−10

)−1
(Σ−10 µ0 + Ω>θ), (16)

Σ∗ =
(
Ω>Ω + Σ−10

)−1
, (17)

a∗ = a0 +N/2, (18)

b∗ = b0 +
(
θ>θ + µ0Σ

−1
0 µ− µ∗Σ−1∗ µ∗

)
/2. (19)

4.2. Gibbs sampling Q and σ when θ has GP prior

In the model with time-varying CLO parameters, we model
the changing parameters with the GP prior in equation (10).
The covariance function k() introduces time-correlations,

while the mean equation and the signal variance introduces
dependence between couples via shared α, β, γ, and σ2.
This requires us to model parameters jointly over times and
couples. For notational simplicity, we omit the subscript j
over θ and q for the remainder of this section; all CLO
parameters follow the same derivation.

Let θ = (θ1,1, θ1,2, · · · , θi,t, · · · , θN,TN
)> be the concate-

nation of all couples’ parameters at all time-steps into a
column vector. Let ki be the covariance matrix for couple
i obtained by evaluating the covariance function k at every
pair of time inputs. Then,

θ|q, σ, s ∼ N (Ω†q, σ2K), (20)

where

Ω† =


ω>1 ⊗ 1T1

ω>2 ⊗ 1T2

. . .
ω>N ⊗ 1TN

 , K =

k1

. . .
kN

 .

Here, 1k is a column vector with k ones, Ti is the time
length of couple i, and ⊗ is the Kronecker product.

Using the same conjugate NIG prior as in section 4.1, we
have q, σ2|θ, s ∼ NIG(µ∗,Σ∗, a∗, b∗), where

µ∗ =
(
Ω†>K−1Ω† + Σ−1

0

)−1 (
Σ−1

0 µ0 + Ω†>K−1θ
)
,

(21)

Σ∗ =
(
Ω†>K−1Ω† + Σ−1

0

)−1

, (22)

a∗ =
(
2a0 +

∑N
i=1 Ti

)
/2, (23)

b∗ = b0 +
(
θ>K−1θ + µ0Σ

−1
0 µ0 − µ∗Σ−1

∗ µ∗
)
/2. (24)

5. Model evaluation
We develop a multi-stage evaluation procedure to learn the
shared model parameters Q, σ and s and evaluate the pre-
dictive power of the learned models using 9-fold cross val-
idation. First, we randomly divide the couples into nine
groups. We get the MAP estimates of the shared param-
eters using the couples in eight out of the nine groups by
algorithms developed in section 4. We then estimate the
predictive errors using the couples in the nineth group by
integrating out couple-specific parameters Θ and the initial
values X1. In particular, we use 100 samples from the pos-
terior for the first 80% of time to compute 100 estimates
for each time point in the next 20% (held out) of time for
each testing couple. We use these estimates to provide a
Monte Carlo estimate of the expected squared error with
respect to the posterior distribution, and report the square
root as RMSE. In the non-drift case, the prediction into the
last 20% for each estimate is simply from the time evolu-
tion of the ODE and initial values. In the drift case, we
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use the samples of the CLO parameters for the first 80% to
compute the mean of the GP predictive distribution for the
CLO parameters. We then evolve that ODE into the last
20% for prediction.

Specifically, RMSE of the predictions of the last 20% time
points (t′ to T ) for couple i with observations yi,t′:T is:

RMSE(yi,t′:T ) =

√√√√ T∑
t=t′

(E[f(t; xi1,θit)]− yit)2/T ,

where E[f(t; xi1,θit)] is the expected value of yit by in-
volving ODE from time 1 forward to time t by equation 3
with samples of initial state xi1 and CLO parameters θit.
We then repeat this step nine times by using each group
as a testing data in turn and learn the shared parameters in
the rest corresponding eight groups. We record the fitting
and predicting RMSE of each couple in the testing group
of each fold and compute the mean of the errors and the
standard error of the mean.

6. Experiments
We tested our models and inference processes both on syn-
thetic data generated from the model and real data that col-
lected in a social psychology experiment.

Experiments with synthetic data. The synthetic data is
composed of 50 couples with observations at 50 time points
for each. The observations of each couple were generated
by using ancestral sampling from the graphical model de-
fined in Fig. 2. Specifically, the CLO parameters of all the
couples share the same prior distribution defined by α, σ,
which were generated from NIG(α0,Σ0, a0, b0), and s,
which were generated from IG(as,bs). The noise sigma
in both data generation and fitting was 0.5. The number
of sampling iterations was 30,000 for parameter learning
and 100,000 for parameter fitting. For model comparison,
we provide the fitting and prediction errors for three base
line models: predicting the last 20% of each couple by 1)
a line that fitted to each partner’s first 80% observations;
2) the average of the first 80% observations; and 3) a fitted
CLO model by maximum likelihood estimation (MLE) of
p(Y|Θ) over the first 80% time points.

The results show that the hierarchical model with learned
shared parametersα, σ, and s can predict much better than
MLE estimation of the parameters from observations.

Experiments with real data. The real data is composed of
recalled self-rating emotion experience of 38 heterosexual
couples with different joint weight status during an emo-
tional conversation in a social experiment lab setting as re-
ported by Reed et al. (2015). During that experiment, cou-
ples were engaged in a video-taped conversation of up to
20 minutes on the importance of living a healthy lifestyle

Table 1. RMSE of fitting and predicting on synthetic data. The
average of both partner’s RMSE is reported ± the error in the es-
timate. The first three rows are results of three base line models:
average, line, and maximum likelihood estimation CLO model.
Results in row with θ ∼ N (α,σ) is obtained by treating θ
constant and learning the couple-shared α and σ from sampling
p(α,σ,θ,x1|y). Results in row with θ ∼ GP(mα, kσ,s) is ob-
tained by treating θ ∼ GP(m(t), k(t, t′)), in which m(t) = α,
and k(t, t′) = σ2 exp(− (t−t′)2

2s2
). The values of α, σ, and s are

learned by sampling from the joint distribution p(α,σ, s,x1|y).
Finally, the last row is obtained by using the optimal scale param-
eter s∗ in data generation and learning the values ofα and σ from
the MAP of p(α,σ,x1|s∗,y).

MODEL FITTING PREDICTING

AVERAGE 0.72 ± 0.04 0.90 ± 0.09
LINE 0.62 ± 0.02 1.12 ± 0.14
MLE-CLO 0.51 ± 0.01 1.05 ± 0.15
θ ∼ N (α,σ) 0.57 ± 0.02 0.86 ± 0.12
θ ∼ GP(mα, kσ,s) 0.52 ± 0.08 0.80 ± 0.10
θ ∼ GP(mα, kσ,s∗) 0.48 ± 0.01 0.76 ± 0.07

and the positive and negative impacts they have on each
other’s health behaviors. Right after the conversation, both
partners were asked to watch their own video recordings
separately and rate how they remembered feeling during
the conversation using a rating dial. In particular, the cou-
ples were asked to rate their emotions continuously second
by second through the whole conversation. Following Reed
et al., we averaged this data into 10 second intervals to re-
duce noise. The number of resulting time points ranges
from 5 to 99, with 48 being the average. The rating dial
measurements ranged from -2.0 (very negative experience)
to 2.0 (very positive experience). We somewhat arbitrarily
set 0.5 as the sigma of the observation noise during both
parameter learning and fitting.

Table 2 shows the mean and the standard deviation of
RMSE of the three base line models on this data set. Ta-
ble 3 shows the results of the stationary CLO with priors
defined by group-shared parameters with different combi-
nations of moderators. Finally, table 4 shows the results for
the time-varying CLO models.

Table 2. RMSE of fitting and predicting on real emotion data of
three baseline models ± the error in the estimate. Not surpris-
ingly, the fitting error of MLE-CLO model has the smallest fitting
error and the largest predicting error due to over-fitting.

MODEL FITTING PREDICTING

AVERAGE 0.52 ± 0.03 0.70 ± 0.05
LINE 0.47 ± 0.03 0.76 ± 0.08
MLE-CLO 0.39 ± 0.03 1.10 ± 0.19
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Table 3. RMSE of fitting and predicting of stationary CLO with
group-shared priors ± the error in the estimate. The model with
θ ∼ N (α,σ) has all couples share the same mean of the CLO
parameters. For subsequent models, the prior distribution of θ
for the CLO model depends on the couples’ average BMI (sec-
ond row), difference in BMI (third row), and both average and
difference (last row).

MODEL FITTING PREDICTING

θ ∼ N (α,σ) 0.44 ± 0.03 0.68 ± 0.06
θ ∼ N (α+ ω̄β,σ) 0.42 ± 0.03 0.64 ± 0.06
θ ∼ N (α+ ω̂γ,σ) 0.43 ± 0.03 0.61 ± 0.05
θ ∼ N (α+ ω̄β + ω̂γ,σ) 0.41 ± 0.02 0.59 ± 0.05

Table 4. RMSE of fitting and predicting of time-varying CLO pa-
rameters with group-shared GP priors ± the error in the estimate.
The mean function of the GP is shared across all couples for the
model in the first row. For subsequent models, the mean func-
tion depends on couples’ average BMI (second row), difference
in BMI (third row), and both average and difference (last row).

MODEL FITTING PREDICTING

θ ∼ GP(mα, kσ,s) 0.46 ± 0.03 0.62 ± 0.06
θ ∼ GP(mα+ω̄β, kσ,s) 0.46 ± 0.03 0.61 ± 0.06
θ ∼ GP(mα+ω̂γ , kσ,s) 0.45 ± 0.03 0.61 ± 0.06
θ ∼ GP(mα+ω̄β+ω̂γ , kσ,s) 0.46 ± 0.03 0.62 ± 0.06

The results in Table 3 show that the group-shared CLO
model, where emotion patterns come from a distribution
learned from the training couples, better predicts the emo-
tion states of unseen couples than individual CLO models
fit to the observations. Furthermore, the BMI moderator
improved prediction accuracy to some extent, which sup-
ports the findings suggested in (Reed et al., 2015).

To see how couples with different BMI values exhibit dif-
ferent emotional dynamic patterns, we plot the predicted
emotional state under different BMI moderators (Figure 3).
We can see that couples in which the woman is heavier than
the man may be emotionally disconnected and the woman
may show increasingly volatile emotional responses. This
could contribute to poorly modulated emotion responses
when discussing health and lifestyle choice.

When we let the CLO parameters of the real data drift over
time, it improves prediction accuracy, reducing the RMSE
from 0.68 to 0.62 when moderators are not present. How-
ever, when the moderators are used, we did not observe
much difference in prediction accuracy. One possible ex-
planation is that the participants did not have significant
changes in their emotion dynamics during the short conver-
sation of the experiment, at least to the extent that can be
extracted from this data which is very noisy. Alternatively,
the effect of drift could be correlated with the moderator.
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Figure 3. Visualizing the predicted emotional states over time
with the same initial state but differing BMI moderator values.
xa is the emotional state for the male partner, and xb is for the
female partner. Figure (a) shows the emotional states for couples
in which the woman is heavier than the man. Figure (b) shows the
emotional states for couples in which the man is heavier than the
woman.

7. Discussion and Conclusion
We have developed models and inference methods to en-
dow linear dynamical systems with parameter drift, and pa-
rameters that are moderated by other variables. We focus
on the case where it is assumed that the parameters are sci-
entifically interesting, and thus we purposely exclude latent
state perturbations as is more common. While including
latent state perturbation in the models is not difficult, do-
ing so would relax the pressure to fit the parameters, which
might be troublesome with data sets where there is signif-
icant unexplained variance such as ours. We have applied
our modeling and inference approach to a challenging so-
cial interaction data set, and were able to confirm a previous
result which was based on regression methods. By contrast
to the approach taken in that work, which is standard in the
social sciences, we developed a cross-validation approach
around the ability of the models to predict conversation pat-
terns into the near future.

There is much left to do. Currently our learning algorithms
are slow — on the order of hours for the 36 couple data
set due to the large number of samples that are needed for
learning. Further, we have only explored coupled oscil-
lators in detail. We are planning to consider other LDS
models on other data such, as well as modeling triads (e.g.,
mom, dad, child). However, our methods are now at the
state where we can provide them to the social science com-
munity via web services (Predoehl et al., 2015).
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