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Abstract.  This paper presents a negative result: current machine colour
constancy algorithms are not good enough for colour-based object
recognition.  This result has surprised us since we have previously used the
better of these algorithms successfully to correct the colour balance of
images for display. Colour balancing has been the typical application of
colour constancy, rarely has it been actually put to use in a computer vision
system, so our goal was to show how well the various methods would do on
an obvious machine colour vision task, namely, object recognition.
Although all the colour constancy methods we tested proved insufficient for
the task, we consider this an important finding in itself.  In addition we
present results showing the correlation between colour constancy
performance and object recognition performance, and as one might expect,
the better the colour constancy the better the recognition rate.

1 Introduction

We set out to show that machine colour constancy had matured to the point where it
would be useful in other aspects of machine vision.  Since all the different colour
constancy algorithms require only a fraction of a second to run, they could be practical
so long as their results were sufficiently accurate. ‘Sufficiently accurate’ begs the
question—“Accurate enough for what?”—so we needed to choose a representative task
that would provide an answer to the question and simultaneously give us a way to
measure accuracy.

In the past the performance of colour constancy algorithms has been reported in
terms of average angular error or RMS error between the predicted and target images
[1]. In this paper, we test colour constancy by putting it to use in colour-based object
recognition. The object recognition strategy is Swain and Ballard’s “colour indexing”
method [2], which is based on comparing histograms of the distribution of image
colours.  Colour indexing fails miserably when the ambient light illuminating the
object to be recognized differs from that used in constructing the database of model
images.  Swain and Ballard suggest using colour constancy preprocessing as a way of
addressing this problem; however, it has since been solved by introducing
illumination-independent representations (e.g., relative colour instead of absolute
colour [3] or by moment-based representations of colour histograms [4]).
Nonetheless, if colour constancy methods work then it seems a natural task for them
to be used in preprocessing images prior to indexing as Swain and Ballard originally
suggested.



Clearly, the fact that colour indexing is sensitive to variations in the ambient
scene illumination is to be expected since its an entirely colour-based method and the
scene illumination directly affects the image RGB colour1. The question we address
here is whether or not existing colour constancy algorithms are effective enough at
generating illumination-independent colour descriptors that colour indexing will work
under the typical range of scene illuminations that are encountered in practice such as
daylight, tungsten light, and fluorescent office lighting.  Since our goal is to test
colour constancy, not to develop a new and improved object-recognition scheme,  we
use colour indexing without modification.

The outline of the paper is as follows: first colour indexing and the importance of
colour constancy for it will be discussed; then the method for colour correction given a
good estimate of the illumination will be considered; this will be followed by a brief
description of each of the colour constancy methods (greyworld, white-patch retinex,
neural net, 2D gamut-constraint, and 3D gamut-constraint); next is the experimental
setup and a description of the database of test images; following this are results and
discussion.

2 Colour Indexing and Colour Constancy

The task for a machine colour constancy algorithm is to generate illumination-
independent descriptors of the scene colours measured in terms of the camera RGB
coordinates.  The camera output is affected by the surface reflectance and the
illumination.  For the red channel we have

R(x, y) = E(∫ λ )S(x, y,λ )CR (λ )  (1)

where CR (λ )  is the spectral sensitivity of the camera’s red channel (similar equations
for the green and blue channels G(x, y)and B(x, y)), E(λ ) is the spectrum of the
incident illumination, and S(x, y,λ )  is the spectral reflectance of the surface.

We assume that the relative spectral power distribution of E(λ ) is spatially
invariant (its intensity may vary), although some colour constancy methods have been
developed that exploit spatial variation in illumination [5]. Surface colours as they
would have appeared under some chosen ‘canonical’ illuminant will be used as
illumination-independent colour descriptors. Hence the machine colour constancy
problem can be expressed as that of deriving an image of the scene as it would appear
under the canonical illuminant RGBcanonical(x,y) given the image of the scene
RGBunknown(x,y) under the unknown illuminant.  The mapping has only to account

for the change in relative spectral power distribution between the unknown and
canonical illuminants.

Many colour constancy methods estimate only the chromaticity of  the colours
under the canonical illuminant and ignore the intensity component.  There are many

                    
1 RGB space defined as the output of our SONY DXC-930 3-CCD colour video camera.

Strictly speaking ‘colour’ is what a human observer perceives, but in this paper we will
also use it to refer to a pixel’s RGB.



ways of normalizing the RGB to eliminate the effect of intensity of which we will use
two different ones here.  Colour indexing will be based on the standard chromaticity
coordinate space:

r=R/(R+G+B);    g=G/(R+G+B) (2)

For colour correction and the 2D gamut-constraint algorithm discussed below, we will
use

r=R/B; g=G/B (3)

Colour constancy algorithms will be used to convert between chromaticity
‘images’, in other words from the chromaticity under the unknown illumination
rgunknown(x,y) they will provide an estimate of what the chromaticity rgcanonical(x,y)

would have been under the canonical illumination.
Colour indexing is performed using 2-dimensional chromaticity histograms.

Swain and Ballard did the majority of their tests using RGB but they included some
tests with rg-chromaticity space.  The method is quite simple.  First a database of
model (chromaticity) histograms is created from images of the objects that we wish
the system to recognize. The objects need to be separated from the background before
the database is built. This segmentation can be done manually if need be.  Given an
image of an object to be recognized—call it the ‘test’ object—its chromaticity
histogram is determined.  Unlike the case for the model objects, the test object does
not need to be separated from the image background. The test histogram T is then
intersected with each model histogram M in the database, where intersection is defined
as,

H(T,M) = min(T j
j=1
∑ ,M j ) / M j

j=1
∑ (4)

The model with the highest histogram intersection score is used to identify the
unknown object.

In our implementation the chromaticity histograms are 16x16.  This sampling
might be too coarse for a very large image database, but for our purposes the coarse
sampling should help tolerate inaccuracies in colour constancy.

3 Colour Constancy and Colour Correction

We test 5 different colour constancy algorithms: greyworld, white-patch retinex, 2D
gamut-constraint, 3D gamut-constraint and neural network.  These algorithms all
either estimate the colour of the incident illumination and then use that estimate to
transform the image colours to canonical colour descriptors, or as in the case of the
gamut-constraint algorithms, they estimate the transformation directly.  We do not
test the Maloney-Wandell [6] algorithm since previous tests [7]  have shown it to
perform very poorly, often worse than doing no colour constancy at all.

The colour correction step is in each case based on a diagonal model of
illumination change.  Other names for the diagonal model are von Kries adaptation and



coefficient rule [8] . The diagonal model simply states that the effect of moving from
one scene illuminant to another can be modeled by scaling the R, G, and B channels
by independent scale factors. These scale factors can be written as the  elements of a
diagonal matrix.  Previous work has shown that the diagonal model works almost as
well as a full 3x3 linear model for typical scene illuminants [9]. In particular, for the
type sensors found in our video camera, which have relatively narrow band and non-
overlapping sensitivity functions, the diagonal model works very well.

Some of the algorithms work in a 2-dimensional chromaticity space.  In this case
a 2x2 diagonal transform can still model the change in chromaticity caused by moving
between illuminants. For the diagonal model to hold, the two-dimensional
chromaticity coordinates must be those defined by Equation 3.  Finlayson [10]

 
shows

that this choice of chromaticity coordinates is crucial in preserving, in 2-dimensional
coordinates, the diagonal model of illumination change that was present in the original
3-dimensional coordinates.

Each of the colour constancy algorithms we test will be described briefly in turn.
The version of the greyworld algorithm we use compares the average of all the RGB
in the image to a 50% ideal grey under the canonical, i.e., to RGBgrey  given by

RGBgrey=(
1
/2)*RGBcanonical.  The diagonal scale factors for colour correction then are

simply Rgrey/Raverage, Ggrey/Gaverage and Bgrey/Baverage.
The white-patch retinex algorithm compares the RGB of white under the canonical

to the maximum found in each of the 3 image bands separately.  There are many
different variants of retinex and our white-patch version corresponds to the infinite-
path-without-reset case described by Brainard and Wandell [11].  It differs from the
retinex described by McCann et al. [12]  Once the maximum in each colour channel is
found, the diagonal scale factors for colour correction are simply Rcanonical/Rmax,
Gcanonical/Gmax and Bcanonical/Bmax.

Previously studies [1] have shown the various gamut-constraint methods [8, 10,
13] to be some of the best performing machine colour constancy methods. The gamut-
constraint method derives constraints on the ambient illumination by evaluating the
differences between the gamut of colours found in the image and those of a canonical
gamut. For our experiments we constructed the canonical gamut from a database of
hundreds of reflectance spectra from a wide variety of common objects. The  canonical
gamut is given by the convex hull of the set of RGB values that would have arisen if
these reflectances were to be illuminated by the canonical illuminant. To understand
the gamut-constraint method, consider an RGB triple a arising in an image of a scene
under some unknown illumination.  What does a’s presence reveal about the
illumination?  Since the canonical gamut represents the full set of RGB’s ever
expected to occur, the same spot under the canonical illuminant must correspond to
some RGB inside the canonical gamut. However, since a has been obtained under an
illuminant different from the canonical one, it may no longer lie within the canonical
gamut.  The set of diagonal transformations mapping a back to the canonical gamut
represents the set of possible unknown illuminations.

Consider as a simple example a database having only 4 reflectances resulting in
the 4 chromaticities (1,2), (2,5), (4,4), (4,3) under the canonical illuminant. The
canonical gamut is defined by the convex hull of these 4 points, which in this



example happen to all be on the hull. Intensity in this case is eliminated by moving
to the two-dimensional chromaticity coordinates defined in Equation 3.

Consider an image RGB triple, a=(6,10,2), converted to chromaticity coordinates
(3,5), which turns out not to lie within the canonical gamut. What does it take to map
it to the canonical gamut?  If we suppose that  a corresponds to one of the 4 known
reflectances, say that represented by (1,2) in the canonical gamut,  then  to map it
there requires a scaling of the first component by 0.33 and the second component by
0.4. On the other hand, it might correspond to the canonical gamut point (2,5) in
which case a scaling of 0.67 and 1.0 is needed. The other 2 canonical gamut points
yield 2 more scaling pairs.  Figure 1 plots the four mappings as filled diamonds.

Of course it might have been the case that a corresponds to one of the points
inside the convex hull of the canonical gamut.  However, only linear scalings are
involved, so mapping to those interior gamut points would only result in scalings
within the interior of the convex hull (solid lines) of the mappings in Figure 1. The
convex hull of the set of mappings, therefore, represents the complete set of mappings
that could take a into the canonical gamut. . Each point within the convex hull in
Figure 1 represents a different hypothesis about the unknown illumination. Each
point models the change in (r,g) created by moving from the canonical illumination to
a possible unknown illumination.

The convex hull in Figure 1 therefore expresses the constraints that finding a in
the image imposed on what the unknown illumination might be.  The illumination
must be represented by one of the points within the convex hull because these are all
the illuminations that could possibly have resulted in one of the colours in the
canonical gamut appearing as a.

One RGB a yields constraints on the unknown illumination and a second one b
will yield further constraints. Suppose the second chromaticity is (2,4), then the
mappings taking b to the hull vertices of the canonical gamut are as shown by the
open circles in Figure 1 superimposed on the mappings for a. Since both a and b
appear in the image, and by assumption, both scene points are lit by the same
unknown illumination, the unknown illumination must be represented by one of the
mappings in the intersection of the two convex hulls. All other candidate
illuminations are eliminated from consideration.

0
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0 1 2

Intersection of llumination
possibilities

Figure 1 . Solid lines show the
convex hull of four diagonal
mappings (0.33,0.4), (0.67,1.0),
(1.33,0.8) and (1.33,0.6) that
transform chromaticity (3,5) to the 4
vertices of the canonical gamut.
Dashed lines show convex hull of
mappings taking (2,4) to the
canonical gamut.  The mappings
describing the unknown illumination
are therefore restricted to the
intersection (shaded) of the two
convex sets



The convex hull of the set of distinct rg’s in the image is called the image gamut.
Each vertex of the image gamut will yield some new constraints on the unknown
illumination that can be intersected with the constraints obtained from the other
vertices. Once the mapping constraint set has been established some heuristic method
must be used to pick one of the remaining candidates as the estimate of the unknown
illumination. We have used the hull centroid as the final estimate.

Forsyth’s CRULE
 
[8] gamut-constraint method does not consider the possibility

of illumination constraints. The experimental results reported below are based on the
gamut-constraint method with added illumination constraints [10]. Measurement of
lots of different light sources reveals quite a restricted gamut. Our sampling of
illuminants includes 100 measurements of illumination around the university campus,
including both indoor and outdoor illumination. Some inter-reflected light was
included such as that from concrete buildings and light filtering through trees, but
illumination that was obviously unusual was excluded. The  resulting illumination
gamut is reformulated in terms of the set of diagonal transformations mapping each
illuminant to the canonical illuminant. In this form it can be intersected with the
constraints from the image gamut to further constrain the estimate of the unknown
illumination.

Gamut-constraint methods can be carried out either in a 2D chromaticity space or a
3D RGB space.  The 3D gamut-constraint method is just like the 2D case except that
the constraint sets are now polyhedral convex hulls.  Potentially the 3D case can be
used to estimate the surface brightness in addition to surface chromaticity, but for our
experiments we do not require the brightness information, so after running the 3D
method we convert back to 2D chromaticity space. It should be noted that carrying out
the gamut-constraint method in 3D and converting the result to 2D is not equivalent
to carrying it out in 2D in the first place.  In addition, when the 3D method is being
used to estimate chromaticity, the final estimate is made by maximizing the volume
of the intersection set. This method of choosing the final estimate originates in [8]
and gives better chromaticity estimates than the hull centroid in the 3D case.

4 Neural Network Colour Constancy

Previously reported results [1] have shown good performance using a neural network
for colour constancy. The network estimates the illuminant chromaticity based on the
gamut of colours present in the image. The neural network is a Perceptron [14] with
one hidden layer and an input layer consisting of 1000 to 2000 binary inputs
representing the chromaticity of the RGB’s present in the scene. The hidden layer has
a much smaller size, usually about 16-32 neurons and the output layer is composed of
only two neurons. Each image RGB from a scene is transformed into standard rg-
chromaticity space (Equation 2) which then is coarsely, but uniformly, discretized and
presented to the network’s input layer. The input is binary indicating either the
presence or absence of the corresponding chromaticity in the image. The output layer
of the neural network produces the values r and g (in the chromaticity space) of the
illuminant. The output values are real numbers ranging from 0 to 1.   



We trained the network using a back-propagation algorithm without
momentum[15] on thousands of synthetic images generated by randomly selecting 1
illuminant and from 1 to 60 reflectances from our database of surface reflectances and
illuminants, and then integrating them with the with the spectral sensitivity functions
of our camera in accordance with Equation 1. During the learning phase the network is
provided the image data along with the chromaticity of its illuminant.

5 The Test Images

The images used for our experiments are of 11 different, relatively colourful objects.
(Figure 2 shows the objects). The pictures were taken with a Sony DXC-930 3-CCD
colour video camera balanced for 3200K lighting with the gamma correction turned off
so that its response is essentially a linear function of luminance. The RGB response
of the camera was calibrated against a Photoresearch 650 spectraradiometer. The
aperture was set so that no pixels were clipped in any of the three bands (i.e.
R,G,B<255). Since most of the images had some specular highlights, reducing the
aperture in this manner left much of each image quite dark. To overcome this problem
we also extended the dynamic range of the images roughly 5-fold by averaging 25
frames (and storing the result as floating point images). Recording the images in this
way produced a more versatile image database since it can then be used to simulate
both the effect of brightening the images by increasing the aperture and the effect of
clipping bright spots.

We took images under 5 different illuminants using the top section (the part
where the lights are mounted) of a Macbeth Judge II light booth. The illuminants were
the Macbeth Judge II illuminant A, a Sylvania Cool White Fluorescent, a Philips
Ultralume Fluorescent, the Macbeth Judge II 5000 Fluorescent, and the Macbeth Judge
II 5000 Fluorescent together with a Roscolux 3202 full blue filter, which produced a
illuminant similar in colour temperature to a very deep blue sky. The effect created by
changing between these illuminants can be seen in Figure 3 where the same ball is
seen under each of the illuminants.  The illuminant spectra are plotted in Figure 4.

Two sets of images were taken. For the "model" set, we took images of each
object under each of the five illuminants, without moving the object. In other words,
we have 11 groups of 5 registered images.   The "test" set is similar, except that the
object was purposefully moved before taking each image. With these two sets of
images we are then able both to evaluate colour indexing under different scene
illuminants with and without changes in object position. In total, 110 images were
used.



Figure 2. The 11 objects in the image database as seen under a single illuminant

Figure 3. Ball-2 as seen under 4 of the 5 illuminants
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Figure 4 .  Spectra of the five test illuminants as measured by a Photoresearch
spectrometer

Before using the images, they were first adjusted according to our camera
calibration model. To do this we first subtract the variation of the background from
the average background level, as determined by averaging a large number of images
with the lens cap on. Then we adjusted pixels darker than a certain amount with a pre-
established look-up table to make up for a small non-linearity in the camera. Finally,
we subtracted the per-channel intercept of the camera linearity data from the images.
The result is an image which is closer to one taken by an "ideal" camera, under the
model that the RGB values are simply integrals as in Equation 1 of the incoming
spectra multiplied by sensor sensitivity functions. When computing image
histograms, the data is further cleaned up by averaging 5-by-5 blocks of pixels and
excluding very dark pixels.



7 Results

Our experiments confirm the obvious hypothesis that colour constancy is likely to
improve colour indexing in situations where the illumination impinging on the test
object is different from that used in constructing the model database. Figure 5 shows a
clear correlation between colour indexing performance and colour constancy error.

The recognition performance measure used in Figure 5 is based on a weighted
average of  colour indexing’s rankings.  During the recognition phase, colour indexing
calculates match strengths for each model in the database. If the strongest match is in
fact the correct object, then we say that we have a rank one match. If the correct object
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is the algorithm’s second choice, then we have a rank two match, and so on. For each
algorithm, we obtain a percentage of the total (220 possible) matches by rank. To
distill these results into a single representative value, we use a weighted sum of the
percentages of the first three ranks: the weight for rank one is one, the weight for rank
two is 1/2, and the weight for rank three is 1/3. Matches beyond rank 3 are considered
failures and count as zero.

The measure for colour constancy error is based on a comparison of corrected and
“target” images. Using the set of registered model images, we compute the root mean
square difference on a pixel-by-pixel basis taken across the entire image in
chromaticity between the target image—the one taken under the canonical
illuminant—and the colour corrected image. Of the 5 illuminants, 4 are adequate for
use as a canonical illuminant. One illuminant creates such a blue cast in the images
that many of the red and green intensities are very low and possibly less reliable. As
result for each colour constancy algorithm we obtain 4x55=220 colour constancy
results, which are averaged to produce the data plotted as filled diamonds in Figure 5.

As noted above, our data set has an extended dynamic range with the images being
purposefully underexposed in order to prevent any clipping. Visual checking by an
impartial colleague suggested that exposure levels for normal viewing would be on
average 2.5 times higher. Thus we simulated image capture at this level by scaling by
2.5 and thresholding anything greater than to 255 to 255.  We then re-ran the
matching experiments; the results are plotted with filled triangles in Figure 5.

Part of our motivation for experimenting with the clipping level was the
unexpectedly good performance of  the white-patch retinex method which was
comparable to the gamut-constraint and neural net methods This was surprising given
comparative results reported by Funt et al. [1].  Upon reflection, however, one might
expect retinex to do relatively well given the special unclipped nature of our images.
Clipping often is the cause of Retinex’s failure because it relies on the brightest
pixels being accurate, and clipped pixels clearly are not accurate. Specular highlights
provide excellent clues to retinex as to the colour of the illuminant, again, providing
they are not clipped.  Our images generally do contain unclipped specularities. Even
without specularities, preserving the maxima in each channel definitely will increase
the performance of white-patch Retinex.

Under the more usual case, where either the human user or automatic aperture
control has adjusted the capture process to obtain a pleasing image, there are
invariably clipped pixels. In this case retinex starts to break down because by
definition, the maximum value in at least one channel is a bad data point. To verify
that this degradation does occur, we simulated clipping at various levels. The result is
plotted in Figure 6. Here it is clear that as the clipping level increases, the retinex
algorithm degrades much more quickly than the others, and when clipping is at the
level of 75-100—consistent with the scaling of 2.5 used above—then its performance
is close to previously reported results. The performance of all the algorithms in the
non-clipped case is shown in Table 1.
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Our original question was: Is machine colour constancy good enough? Based on
our results, we feel that the answer is no. Table 2 shows the indexing performance of
colour indexing using each algorithm for preprocessing. The best performer finds only
67% of the objects (rank 1 matches); whereas, the results  (92% rank 1) based on
using the actual illuminant RGB for colour correction indicate that both colour
indexing and the diagonal model of illumination change will together support much
better performance. Thus we conclude that we still have some distance still to go
before machine colour constancy is up to the task of supporting object recognition.

In terms of our methodology, we feel that we gave machine colour constancy every
reasonable chance, and thus the results should be considered closer to the “best case”
than the “worst case”. For example, we used illumination with spatially uniform
chromaticity and were careful to remove noise through temporal and spatial averaging.
We have also taken some trouble to develop a good camera model as required by some

Algorithm RMS Error
Nothing 0.1114
Actual 0.0306
White-Patch Retinex 0.0625
Greyworld 0.0975
2D Gamut-Constraint 0.0649
3D Gamut-Constraint 0.0555
Neural Net 0.0634

Table 1:  Colour Constancy Error by Algorithm: The error is the RMS difference in
chromaticity between mapped image and registered target image. The results are the average
of 220 results, being the estimated maps for 55 images to each of 4 illuminants.  "Nothing"
denotes doing no colour constancy and simply using the input image as the output image.
"Actual" denotes using the true unknown illuminant RGB to do colour correction based on
the diagonal model.

Rank 1 2 3 4 5 6 7 8 9 1 0 1 1
Nothing 28.4 10.2 9.1 9.1 8.5 6.8 4.5 6.2 5.7 4.5 6.8
Perfect 97.7 2.3
Actual 92.3 5.5 1.4 0.9
Retinex 67.7 8.6 5.9 1.8 2.7 1.8 1.4 3.2 5.5 0.9 0.5
Grey world 46.4 9.1 7.3 8.2 2.3 5.0 1.8 2.3 5.9 9.5 2.3
2D Gamut 60.0 10.9 8.6 5.5 1.8 3.6 2.3 2.3 1.8 1.4 1.8
3D Gamut 67.3 8.6 5.5 2.3 2.7 3.2 3.2 1.8 2.3 0.5 2.7
Neural net 61.4 7.7 7.7 4.1 1.8 2.3 1.4 1.4 1.8 5.9 4.5

Table 2: Number of matches by rank in percent. The total number of attempted matches i s
220 for each except for "perfect" where only 44 matches make sense. “Perfect” indicates the
case where the test illumination is the same as the canonical illumination and hence there i s
exact “colour constancy.”



of the algorithms. Finally, the database was relatively small, and we avoided bad
matches due to colours appearing coincidentally in the background by placing the
objects on black cloth.

Having said that, we wish to emphasize some aspects of the experiment that were
not open to compromise. First, and foremost, the data is real image data, and the
objects are random everyday objects as opposed to, for example, planer non-specular
“Mondrians”. In particular, the object database includes several objects with a
significant fluorescent component (e.g., the Tide box image).  The fluorescent
component does not change in the same way as the matte component which presents a
problem for the diagonal model.  It is perhaps also of some significance that the
images were taken by a research assistant who had little understanding of the intended
purpose of the experiment—possibly eliminating any unintended bias in the choice of
objects to test. Finally, the illuminants represent quite a dramatic range in terms of
what is usually encountered in common natural lighting and standard man-made
lighting situations without adding the unusual effects of things like heavily filtered
theater lights.

8 Conclusion

We tested machine colour constancy algorithms using the computer vision task of
colour-based object recognition based on colour histogram intersection.  The colour
constancy algorithms did not perform as well as expected based on previous results
with colour balancing images. We expected that colour constancy processing would
provide colour descriptors that would be accurate enough that colour indexing
performance would be close to that obtained when there is no change in the ambient
illumination. As shown in Table 2, this is did not turn out to be the case. Colour
constancy pre-processing did, however, yield a significant improvement over doing no
pre-processing, it simply was not enough of an improvement. Figure 5 shows that the
degree of improvement in histogram matching appears almost linearly related to the
RMS error in colour prediction.

The results of Brainard et al. [16] indicate that human colour constancy is not all
that accurate and state (p. 2101) “Our results represent neither complete constancy nor
a complete absence of constancy.”  The results of our experiments raise the question
as to whether or not human colour constancy would be sufficiently accurate for
histogram-based object recognition?

We take the current state of machine colour constancy performance as a challenge
for future research. It is clear that without RMS errors in colour prediction under 0.04,
a typical vision task such as object recognition can not be based on absolute
descriptors (as opposed to relative ones, like ratios) of colour.



References

1 . Funt, B.V. and Cardei, V., Barnard, K.,  Learning Color Constancy, IS&T Fourth
Color Imaging Conference, Scottsdale, Nov. 1996.

2 Swain, M., and Ballard, D., “Color Indexing,” Int. J. Comp Vision, 7:11-32, 1991.
3. Funt, B.V., and Finlayson G.D., Color Constant Color Indexing,  IEEE Trans. Patt.

Anal. and Mach.  Intell, 17(5), May 1995.
4. Healey, G. and Slater, D. “Global Color Constancy: recognition of objects by use of

illumination invariant properties of color distributions,” J. Opt. Soc. Am. A ,
11(11):3003-3010, Nov. 1994.

5. Barnard. K., Finlayson, G., Funt, B., Colour Constancy for Scenes with Spectrally
Varying Illumination, ECCV'96 Fourth European Conference on Computer Vision,
Vol. II, pages 3-15, April 1996.

6. Maloney, L. and Wandell, B., “Color constancy: a method for recovering surface
spectral reflectance,” J. Opt. Soc. Am. A, 3:29-33, 1986.

7. Finlayson, G., Funt, B. and Barnard, J., Colour Constancy Under a Varying
Illumination, Proc. Fifth Intl. Conf. on Comp. Vis., Jun 1995.

8. Forsyth, D., A novel algorithm for color constancy, Intl. Journal of Computer Vision
5:5-36, 1990.

9. Finlayson, G., Drew, M., and Funt., B., Color Constancy: Generalized Diagonal
Transforms Suffice, J. Opt. Soc. Am. A, 11(11):3011-3020,1994

10. Finlayson, G. Color in Perspective, PAMI Oct. 1996. Vol. 18 number 10, p1034-
1038

11. Wandell, B.A. Analysis of the Retinex Theory of Color Vision, Journal of the Optical
Society of America A, V 3, pp.1651-1661, Oct. 1986.

12. McCann, J.J., McKee, P., and A Taylor, T.H.,   Quantitative Studies in Retinex
Theory,  Vision Res. Vol. 16 pp.  445-458, 1976.

13. Kobus Barnard, "Computational colour constancy: taking theory into practice," MSc
thesis, Simon Fraser University, School of Computing (1995).

14. Hertz, J., Krogh, A., and Palmer, R.G. Introduction to the Theory  of Neural
Computation, Addison-Wesley Publishing Company, 1991.

15. Rumelhart, D.E., Hinton, G.E., and. Williams, R.J, Learning Internal
Representations by Error Propagation in D.E. Rumelhart & J.L. McClelland (Eds.),
Parallel Distributed Processing: Explorations in the Microstructure of Cognition.
Vol.1: Foundations. MIT

16 Brainard, D., Brunt, W., and Speigle, J., Color Constancy in the nearly natural
image. I. Asymmetric matches, Journal of the Optical Society of America A, V 14,
pp.2091-2110, Sept. 1997.


