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Abstract

Sensor sharpening has been proposed as a method for
improving color constancy algorithms but it has not been
tested in the context of real color constancy algorithms. In
this paper we test sensor sharpening as a method for
improving color constancy algorithms in the case of three
different cameras, the human cone sensitivity estimates,
and the XYZ response curves. We find that when the
sensors are already relatively sharp, sensor sharpening does
not offer much improvement and can have a detrimental
effect. However, when the sensors are less sharp,
sharpening can have a substantive positive effect. The
degree of improvement is heavily dependent on the
particular color constancy algorithm. Thus we conclude
that using sensor sharpening for improving color
constancy can offer a significant benefit, but its use needs
to be evaluated with respect to both the sensors and the
algorithm.

Introduction

Sensor sharpening has been proposed as a method for
improving color constancy algorithms [1], but it has not
been tested in the context of real color constancy
algorithms. Rather, the experimental results available are
limited to the minimum error possible with and without
sharpening. Since the error in current color constancy
methods is often substantially larger than the minimum
error possible, we felt it necessary to investigate further
the utility of sensor sharpening for color constancy. In
this paper we provide results of color constancy with and
without sharpening for a Sony DXC-930 CCD video
camera, a Kodak DCS-200 digital camera [2], a Kodak
DCS-420 digital camera [2], the XYZ response curves [3],
and the Vos and Walraven human cone sensitivity
estimates [3]. The general conclusion is that when the
sensors are already relatively sharp (e.g. the Sony camera),
further sensor sharpening is not worth the trouble, and
often has a small detrimental effect. However, when the
sensors are not sharp (e.g. the DCS-200 and DCS-420),
sensor sharpening can have a substantial positive effect,
depending on the algorithm, thus validating the original
work.

Sensor Sharpening

We begin with an explanation of sensor sharpening
[1]. The motivation for sensor sharpening is the
observation that most color constancy algorithms make
use of a diagonal model of illumination change. To
understand this model, consider a white patch under two
different illuminants. Suppose that under the first
illuminant the color is [r,g,b] and under the second
illuminant the color is [rÕ, gÕ, bÕ]. It is possible to map
the color of white under the first illuminant to the color
under the second by post-multiplication by a diagonal
matrix: [rÕ, gÕ, bÕ] = [r, g, b] diag(rÕ/r, gÕ/g, bÕ/b). If the
same diagonal matrix transforms the RGB of all surfaces
(not just the white ones) to a good approximation, then
we say that we have a diagonal model of illumination
change. It turns out that the accuracy of the approximation
is a function of the vision systemÕs sensors.

The idea of sensor sharpening is to map the data by a
linear transform T into a new space where the diagonal
model holds more faithfully. Colour constancy algorithms
which rely on the diagonal model can then proceed more
effectively. The final result is then mapped back to the
original RGB space with the inverse transformation.
Working in the transform space is like having new
sensors which are a linear transformations of the old ones.
Further, the sensitivity functions of sensors which
support the diagonal model tend to look sharper with
narrower peaks than ones that do notÑin the extreme
case, if the sensors are delta-functions, the diagonal model
holds exactly. From these two observations, we get the
name: sensor sharpening.

The main technical result in sensor sharpening is
finding the transformation T. In [1], Finlayson et al
propose three methods for finding T: Òsensor based
sharpeningÓ, Òdatabase sharpeningÓ, and Òperfect
sharpeningÓ. For this work we chose database sharpening
over sensor based sharpening due to the clean
correspondence between the sharpening method and a color
constancy error metric. Perfect sharpening did not work
well for us because our test illuminant set did not meet
the key requirement of being two-dimensional, partly due
to the inclusion of fluorescent lights.





maximum in each channel intuitively estimates white in
RGB space, but its choice as an estimator in sharp space
is less clear. Similar considerations are also relevant in
analyzing methods for choosing a solution from the
constraints sets found with gamut mapping algorithms.

Additional problems can occur with the gamut
mapping algorithms due to negative RGB which can be
introduced by sharpening. Depending on the variant of the
algorithm, it may or may not be problematic to have
negative components in the sharpened input data,
canonical data, or illuminant database data. We found that
the chromaticity version of ForsythÕs method [10] is very
sensitive to these problems, and therefore we do not
include results for it. In the case of the RGB variants used
below, a few of the illuminants cause trouble; in the
context of an application, one could default back to non-
sharp computation. However, for the purposes of testing
we simply exclude that generated scene from the test, thus
ensuring that all algorithms are run on the same data.

Results

We have investigated sensor sharpening in the case of
a Sony DXC-930 CCD video camera, a Kodak DCS-200
digital camera [2], a Kodak DCS-420 digital camera [2],
the XYZ response curves [3], and the Vos-Walraven
human cone sensitivity estimates [3]. As our main
interest here is machine vision and image reproduction, we
are most interested in the results for the cameras.
However, sharpening is also of interest in relation to
human vision[1].

A sampling of our results is shown in Table 1. The
data was used was generated from a test set of 100
measured illuminants (normalized to be the same
magnitude), a database of roughly 2000 reflectances, and
the 5 different sensors. The 100 measured illuminants
include a variety of indoor and sources and outdoor
illumination, as well as a complex combinations thereof
obtained at random locations in and around our university
campus. We note that the results of sharpening are a
function of the spectra databases; our data sets were chosen
to be as general as possible.

As discussed above, the result of each algorithm can
be interpreted as supplying a mapping from unknown
illuminant images to canonical ones. To obtain the errors
presented here, we applied that mapping to a large set of
RGB computed using the entire reflectance database,
together with the test illuminant and the sensors. We then
computed a similar set using the canonical illuminant,
which was chosen to be a Tungsten illuminant, and
tabulated the RMS difference of the two sets. This error
metric was chosen to coincide with the error which
database sharpening strives to reduce. Lack of space
prevents us from providing errors using other metrics.

Each entry in the table is the average of 600 results.
The first five rows in the two tables are target results. The
first row is the best linear fit (which is also the best
diagonal fit with optimal database sharpening), the second
is the best diagonal fit, the third is the result of
ÒknowingÓ the RGB of the illuminant, the forth is the
same with optimal database sharpening, and the fifth is
the same with sharpening using the global average
illuminant. Following the target results are the results of
several algorithms estimating the best diagonal map on
the basis of 8 randomly chosen data points.

The ÒsharpnessÓ of the sensors can be taken as the
relative magnitudes of the best linear fit and the best
diagonal fit. The results below indicate that sharpening the
already ÒsharpÓ DXC-930 sensors is troublesome at best.
However, in the case of the less sharp DCS-200 and DCS-
420 sensors, sharpening can give a substantial
improvement, as is the case with the E-CRULE-HA
algorithm. For example, with the DCS-200, average
illuminant based sharpening reduces the error of E-
CRULE-HA from 81.3 to 33.0. E-CRULE-HA is better
tuned than E-CRULE-MV for both the data set and the
error metric, and thus the difference between the two
algorithms in the case of sharp sensors is not surprising.
However, it is interesting to note that in the case of the
DCS-200 and DCS-420 sensors, sharpening was required
to obtain the advantages of this algorithm in this
situation. In summary, the results indicate that the benefit
of sharpening is quite dependent on the algorithm, which
is understandable based on the discussion above, but the
magnitude of the effect is still surprisingly large.

In Table 1 we exclude results for the cone sensitivity
estimates. Most algorithms did not work well in the sharp
space for these sensors. Only the comparison algorithms
and the gray world algorithm gave reasonable results.
With these sensors, the sharpened RGB typically had
negative R and G. This almost always made the gamut
mapping approach untenable, and also made the Retinex
algorithm perform very poorly.

Finally, we note that when sharpening is beneficial
for the real color constancy algorithms, using the global
average illumination for sharpening is not much worse
than the optimal. On the other hand, in the case of the
known illuminant ÒalgorithmÓ, optimal sharpening gives
substantially better results (relative to the already small
error) than average illuminant sharpening. This suggests
that as color constancy improves, the method of choosing
the sharpening transform becomes more relevant.
However, when we ran some of the experiments again
with the number of surfaces increased to 32 in order to
improve color constancy, the advantage of using the
optimal sharpening was still slight, even though the
RMS error for some of the algorithms was less than 20.




