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Abstract

Color images often must be color balanced to remove unwanted color casts. We extend previous

work on using a neural network for illumination, or white-point, estimation from the case of calibrated

images to that of uncalibrated images of unknown origin. The results show that the chromaticity of the

ambient illumination can be estimated with an average CIE Lab error of 5∆E. Comparisons are made

to the grayworld and white patch methods.

Introduction

To remove a color cast from an image so that it is properly color balanced, the color of the scene

illumination must be estimated. Illumination estimation in this sense is also commonly referred to as

white point estimation. Even when the imaging device’s characteristics are fully known, accurate

illumination for color cast removal has proven difficult, but there has been progress [1–6]. In this

paper, we test a neural-network-based method for estimating the illuminant in the general case in

which the imaging parameters are unknown.

In the case of digital photography images, the camera can be calibrated so that the sensor

sensitivities as a function of wavelength are known as well as their response as a function of intensity.

Many existing color constancy algorithms [1–6] depend on having calibrated sensors. In many

situations –images downloaded over the Internet or scanned from film– the imaging characteristics are

either unknown or else, as in the case of film, very difficult to control. In previous work [7], we

proposed a computational framework for color correction of uncalibrated images given an estimate of

the illumination chromaticity. In this paper, we test how well various illumination-estimation

algorithms (greyworld, white patch, neural net, and bootstrapping) work when presented with

uncalibrated image data.
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Unknown Imaging Parameters

Calibrating specifies three important aspects of a 3-channel color imaging system: (1) the response

of each channel as a function of intensity; (2) the white balance, which is the input spectrum which

creates equal, and usually maximal, output across all 3 channels; and (3) for each channel, the relative

sensor sensitivity as a function of wavelength. We will assume there is no spatial variation in these

characteristics.

In terms of the channel response as a function of intensity, it is possible for this function to be an

arbitrary function but generally it will be monotonic. However, we will restrict our attention to

“gamma” functions of the form I=SDγ, where I is the resulting luminance, S is the camera gain and D

is a pixel value in the 0..1 range.

Such functions are typical in imaging systems. Poynton [8] discusses gamma in detail. In what

follows, we will assume that any non-linearity in the sensor response has been created by gamma, but

that the value of gamma is not known since it generally differs between imaging systems. We will term

images for which gamma does not equal unity to be ‘gamma-on’ images. Linear images are ‘gamma-

off’ and have gamma equal one.

For a gamma-on image, we have shown [7] that it is possible to color correct it by a diagonal

transformation without first linearizing the image. The off-diagonal terms of the general image

transformation (i.e. the best linear fit) are larger for gamma-on images than gamma-off ones, so the

average error of a diagonal transformation (which ignores the off-diagonal terms) is greater. However,

the perceptual error induced by such a transformation is still small. Also, although gamma introduces a

color shift, the shift is independent of pixel intensity. Finally, diagonal color correction [9] and

application of gamma are commutative. As a result, we can color correct gamma-on images in the

same way we as linear, gamma-off images.

The second problem in handling uncalibrated images concerns the imaging device’s color balance.

We assume that the device was balanced so that it produced equal RGB values for a white patch under

some chosen illuminant, but that we do not know which illuminant it was. In theory, color correcting

an image taken with an unknown balance does not pose a problem, since the calibrating coefficients

(used to scale the sensors) can be absorbed into the diagonal transformation required for color

correction. In effect, the color balance problem folds in with the illumination. However, finding the

resulting diagonal transformation could prove difficult for the algorithms [4,5] whose results depend

on an expected set of illuminants. The combined balance-illumination transformation will likely fall

outside the range of expected illuminants thereby causing inaccurate results.
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The third aspect of working with uncalibrated images is not knowing the sensor sensitivity

functions. Sensors differ significantly, even for the simple case of digital cameras balanced for the

same illuminant. Two camera models balanced for the same illuminant will by definition have the

same response to white, but can have different sensors responses to other colors. Figure 1 shows the

difference between responses of a SONY DXC-930 and a Kodak DCS460. To eliminate the effects of

noise or other artifacts from the comparison, RGB values were synthesized using the sensor sensitivity

curves of the two cameras along with the surface reflectances of the 24 Macbeth Colorchecker patches.

Both cameras were balanced for the same illuminant. Figure 1 plots the sensor responses in rg-

chromaticity space (r=R/(R+G+B), g=G/(R+G+B), where it can be seen there responses vary

significantly. This variation in sensor response can adversely affect color constancy algorithms that

rely on prior distributions of sensor responses.

Figure 1. Comparison of rg-chromaticities obtained by two cameras balanced for the same

illuminant.

Illumination-Estimation Algorithms

We test several different illumination-estimation algorithms on a database of ‘uncalibrated’

images. The images are uncalibrated in the sense that the imaging characteristics are not provided to
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the algorithms, even though we have the calibration parameters available so that we can evaluate the

results. In particular, we test the white patch algorithm (WP), a version of the grayworld algorithm

(GW) and two neural-network-based methods. The gamut-constraint methods [3,4] were not tested

because they require information about the expected gamuts of reflectances or illuminants.

 The image database contains 116 images taken with a Kodak DCS-460 camera and 67 images

scanned with a Polaroid Sprintscan 35+ slide scanner from various film types: Kodak Gold, Kodak

Royal, Agfa Optima, Polaroid HiDef and Fuji Superia. The slides were scanned using a ‘generic’ pre-

defined scanner setting. This setting is consistent with the assumption of unknown pre-processing.

Using the manufacturer’s setting for each film type would have allowed the scanner driver to calibrate

partially the images for differences in the film characteristics.

We divide the image database into two sets, the first for training and the second for testing. The

training set contains 102 images and is used for training the neural network and computing the average

color for use in the database grayworld algorithm. The test set contains the other 81 images (57 DCS

images and 24 slides).

For the GW algorithm, the chromaticity of the illuminant is determined from the average of all the

pixels in an image. GW assumes that the average color of the scene is gray and that any departure from

this average in the image is caused by the color of the illuminant. The average is computed relative to

the average chromaticity computed using all pixels in the training database. Using the database average

as the definition of gray compensates for the fact that gray may not have exactly equal r and g

chromaticities. Nonetheless, GW’s performance will be poor when the test images have different

average distributions than the ones used for computing the database average.

The WP algorithm determines white, and hence the illuminant color, as the maximum R,

maximum G and maximum B found in the image. The WP algorithm has roots in the family of retinex

algorithms[1], but it is only equivalent to it under restricted circumstances.

Two differently trained neural networks were used for illumination estimation. The network

architecture was the same in both cases; namely, a Perceptron with two hidden layers as we have

previously described [10,11]. The networks are trained to estimate the chromaticity of the illuminant

based on the binarized rg-chromaticity histogram of an input image. The 3600-node input layer is fed

binary values representing the presence or absence of chromaticities falling within a particular

chromaticity bin. The first hidden layer contains 50 neurons and the second layer 20 neurons. The

output layer consists of only two neurons representing the chromaticity of the illuminant. All neurons

have a sigmoid activation function.
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Both neural networks were trained using backpropagation. The error function for training and

testing is the Euclidean distance in rg-chromaticity space between the actual illuminant and its

estimate.

The difference between the training of the two networks concerns the method of determining the

actual illuminant. For the first network, the illuminant chromaticity is simply measured from the

reference white standard that was contained within each image. This provides an accurate value for the

illuminant’s chromaticity. For the second network, a less accurate method is used, which we have

called the bootstrapping method [11]. The bootstrapped network uses the GW algorithm to measure the

chromaticity of the illuminant for training. Clearly, the illuminant value determined by GW will only

be approximately correct; nonetheless, previous experiments with calibrated image data showed that

the network ‘learned’ to make a better estimate than the simple GW algorithm used to train it. Our new

experiments described below show that bootstrapping works even for the more general case of non-

linear images acquired from various sources. This approach allows us to train a neural network for a

range of uncalibrated cameras and scanners, without having to explicitly measure white patches in the

set of training images.

Experimental Results

The algorithms presented above were tested on an image database containing 81 images. Figures 2

and 3 show the relative performance of the color constancy algorithms. The figures show the average

errors over the whole test set as well as for each type of input (i.e. for DCS images and slides).

In Figure 2, the average errors are computed in the rg-chromaticity space, the same space in which

the neural network was trained.

“Nothing” refers to assuming that the illuminant is the one for which the device is calibrated and

reflects the variation in the chromaticity of the illuminant across the test set of images, relative to white

(located at r=g=1/3 in rg-chromaticity space). “NN” refers to the neural network trained with

accurately measured illumination data, while “Bootstrapped NN” refers to the same network trained

using GW illumination estimates.
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Figure 2. Average errors measured in rg-chromaticity space.

Figure 3 presents similar results, but with the error measured in CIE Lab space. The conversion

from the RGB space to CIE Lab assumes the images are to be viewed on a sRGB-compliant [9]

monitor.

Figure 3. Average CIE Lab ∆E space between actual and estimated illuminant fixed

to the same L* value.

Discussion

Previous studies [10,11] based on calibrated, linear image data have shown that a neural network

can accurately estimate the illumination chromaticity. Often we must work with uncalibrated image

data, so we trained and tested several algorithms on uncalibrated data, but in a controlled manner. On

this test data, the neural net average error is 5.14∆E. We believe this to be useful for removing color
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casts from images of unknown origin. In the tests with the bootstrapping method of training the neural

network, the ∆E error increased to 9.38. Nonetheless, this is better than either the GW or WP methods

and the bootstrapping method can be applied in situations where accurate measurements of the

illuminant chromaticity are unavailable for training.
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