The Z - buffer

• For each pixel on screen, have a second memory location - called the z-buffer
• Set this buffer to a value corresponding to the furthest point
• As a polygon is filled in, compute the depth value of each pixel
 – if depth < z buffer depth, fill in pixel and new depth
 – else disregard
• Typical implementation: Compute Z while scan-converting. A ∂Z for every ∂X is easy to work out.
The Z - buffer

• Advantages:
 – simple; hardware implementation common
 – efficient z computations are easy.
 – ok with lots of surfaces (if there are lots, they tend to be small, and not much difference to this algorithm)

• Disadvantages:
 – over renders - can be slow for very large collections of polygons - may end up scan converting many hidden objects
 – quantization errors can be annoying (not enough bits in the buffer)
 – doesn’t do transparency, or filtering for anti-aliasing.
The A - buffer

• For transparent surfaces and filter anti-aliasing:

• Algorithm: filling buffer
 – at each pixel, maintain a pointer to a list of polygons sorted by depth.
 – When filling a pixel:
 • if polygon is opaque and covers pixel, insert into list, removing all polygons farther away
 • if polygon is opaque and only partially covers pixel, insert into list, but don’t remove farther polygons

• Algorithm: rendering pixels
 – at each pixel, traverse buffer using brightness values in polygons to fill.
 – values are used either in transparency or for filtering for aliasing
Scan line algorithm

• Assume polygons do not intersect one another.
• Observation: on any given scan line, the visible polygon can change only at an edge.
• Algorithm:
 – fill all polygons simultaneously at each scan line, have all edges that cross scan line in AEL
 – keep record of current depth at current pixel - use to decide which is in front in filling span
Scan line algorithm

- To deal with penetrating polygons, split them up
Scan line algorithm

• Advantages:
 – potentially fewer quantization errors (typically more bits available for depth, but this depends)
 – filter anti-aliasing can be made to work.

• Disadvantages:
 – invisible polygons clog AEL, ET (can get expensive for complex scenes).
Depth sorting

- Sort in order of decreasing depth
- Render in sorted order
- For surface \(S \) with greatest depth
 - if no depth overlaps (z extents intersect) with other surfaces, then render (like painter’s algorithm), and remove surface from list
 - if a depth overlap is found, test for problem overlap in image plane
 - if \(S, S' \) overlap in depth and in image plane, swap and try again
 - if \(S, S' \) have been swapped already, split one across plane of other (like clipping) and reinsert
- Testing image plane problem overlaps (test get increasingly expensive):
 - xy bounding boxes do not intersect
 - or \(S \) is behind the plane of \(S' \)
 - or \(S' \) is in front of the plane of \(S \)
 - or \(S \) and \(S' \) do not intersect
- Advantages:
 - filter anti-aliasing works fine
 - no depth quantization error
 - works well if not too much depth overlap (rarely get to expensive cases)
- Disadvantages:
 - gets expensive with lots of depth overlap (over-renders)
BSP - trees

- Construct a tree that gives a rendering order
- Tree splits 3D world into cells, each of which contain at most one piece of polygon.
- Constructing tree:
 - Choose polygon (arbitrary)
 - split its cell using plane on which polygon lies
 - continue until each cell contains only one polygon
BSP - trees

2D version for illustration
BSP - trees

• Rendering tree:
 – recursive descent
 – render back, node polygon, front

• Disadvantages:
 – many small pieces of polygon (more splits than depth sort!)
 – over rendering (does not work well for complex scenes with lots of depth overlap
 – hard to get balanced tree

• Advantages:
 – one tree works for any focal point (good for cases when scene is static)
 – filter anti-aliasing works fine, as does transparency
 – data structure is worth knowing about
Area subdivision

• Four tractable cases for a given region in image plane:

 – no surfaces project to the region (do nothing or paint background)

 – only one surface completely surrounds the region (paint surface)

 – only one surface is completely inside the region or overlaps the region (do nothing or paint background and then scan convert region)

 – a polygon is completely in front of everything else in that region determined by considering depths of the polygons at the corners of the region (paint surface)
Area subdivision

- **Algorithm:**
 - subdivide each region until one of these cases is true or until region is very small
 - if case is true, deal with it
 - if region is small, choose surface with smallest depth.

- **Advantages:**
 - can be very efficient
 - no over rendering
 - anti-aliases well (subdivide a bit further)
Ray Casting

- Image precision algorithm
- For each pixel cast a ray into the world
 - For each surface
 - determine intersection point with ray
 - Render pixel based on closest surface
Ray Casting

- First step in ray tracing algorithm
- Expensive
- Good performance usually requires clever data structures such as bounding volumes for object groups or storing world occupancy information in octrees.
- Other main problem is computing intersection.
- For polygons, we can use the standardized orthographic space where we can work in 2D.
- See book for intersections with spheres in perspective space.
- Useful for “picking”--not expensive here (why?)
Ray Tracing--teaser

• Idea is very simple--follow light around
• Following all the light around is intractable, so we follow the light that makes the most difference
• Work backwards from what is seen
• Simple ray tracer
 – Cast a ray through each pixel (as in ray casting for visibility)
 – From intersection point cast additional rays to determine the color of the pixel.
 – For diffuse component, must cast rays to the lights
 – We may also add in some “ambient” light
 – For mirrors, must cast ray in mirror direction (recursion--what is the stopping condition)
Current state of intro students graphic’s ability

Know how to draw polygons
Know about cameras
Know how to map 3D polygons onto the screen
Know how to draw the bits closest to the cameras

Issues

Should we live in a polygonal world?
How do you get polygons for complex objects?
What color should each pixel be?
Coloring pixels

Need to model light and surface

Simplest model
Point light source and Lambertian (diffuse) reflection. Gives basic shader--makes things look 3D

Point light source
Modeled by single light direction (key attribute, more than "point-like"--e.g., the sun is essentially a point source
Lambertian Reflection

- Light is scattered equally in all directions
- Brightness is independent of viewing direction
- Example--non-shiny paper
- Simple rule--attenuate brightness by

\[\mathbf{n} \cdot \mathbf{s} \]

Surface normal \hspace{1cm} Light source direction