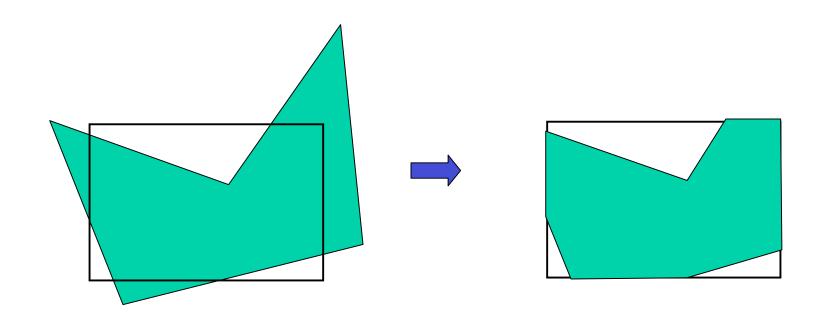
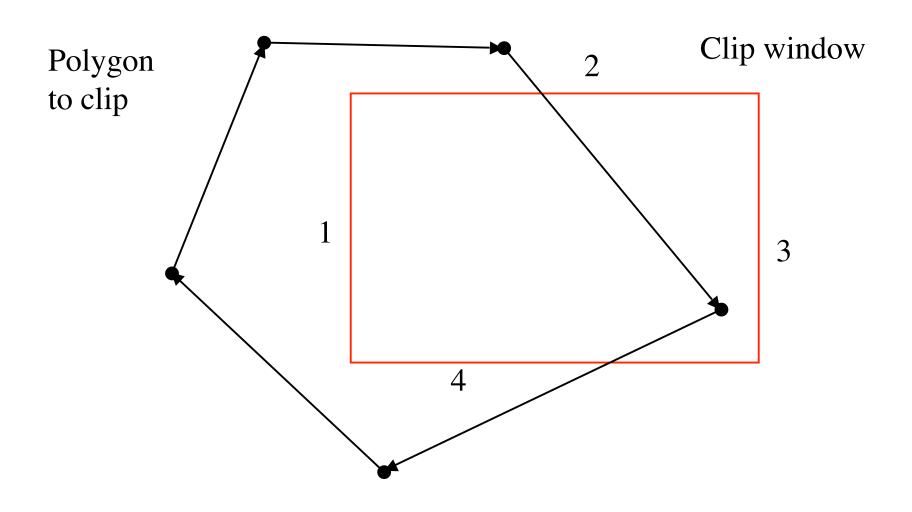
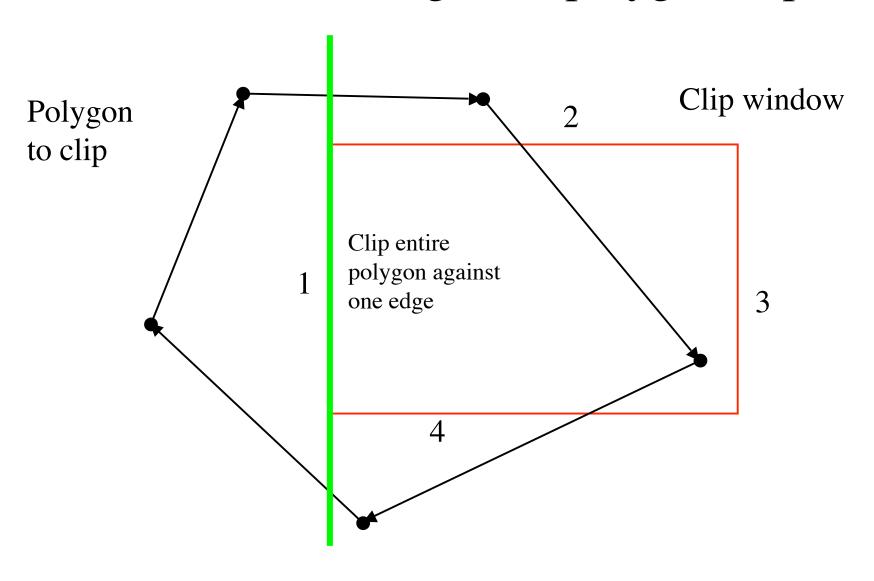
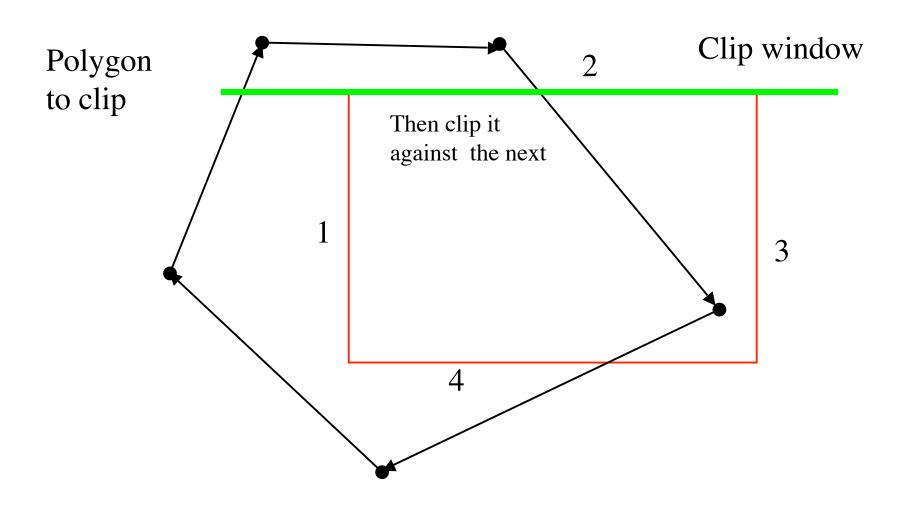
Polygon clip (against convex polygon)

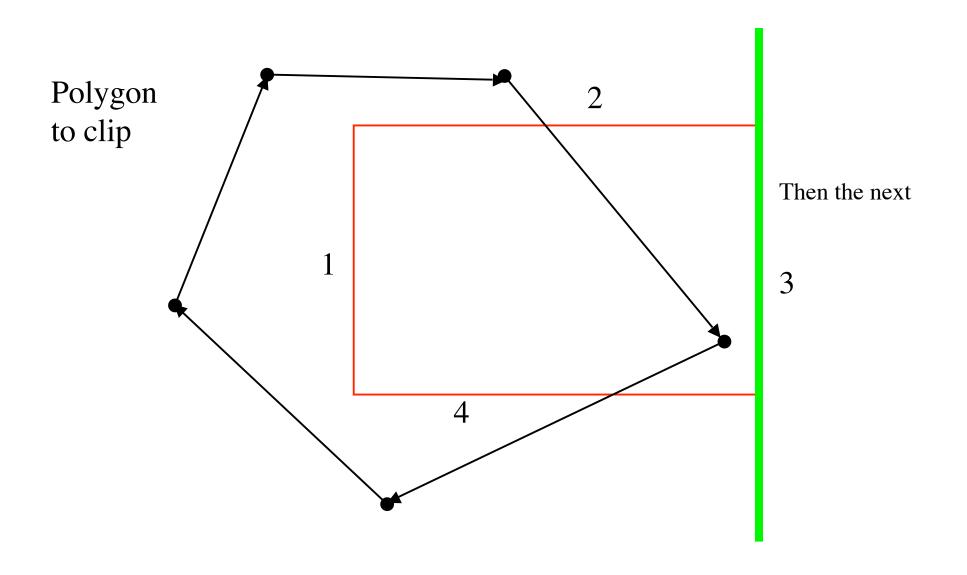


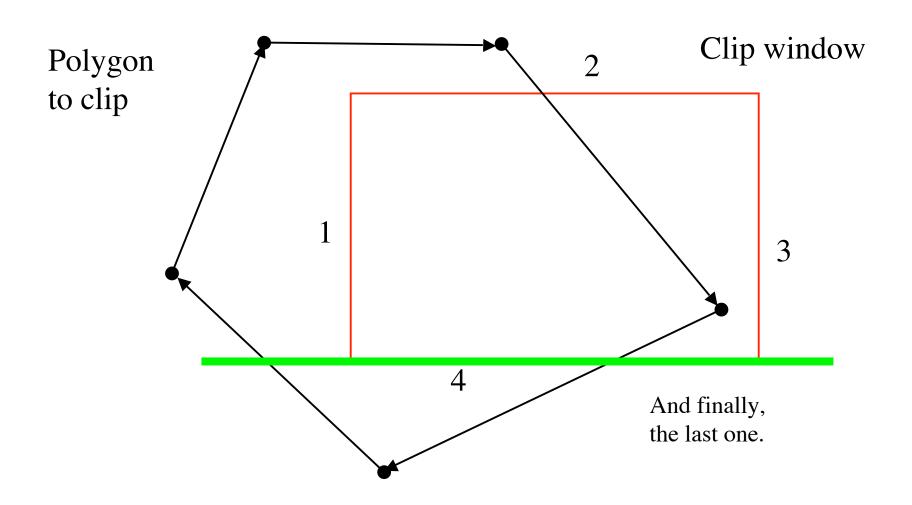
- Recall: polygon is convex if any line joining two points inside the polygon, also lies inside the polygon; implies that a point is inside if it is on the right side of each edge.
- Clipping each edge of a given polygon doesn't make sense how do we reassemble the pieces? We want to arrange doing so on the fly.
- Clipping the polygon against each edge of the clip window in *sequence* works if the clip window is *convex*.
- (Note similarity to Sutherland-Cohen line clipping)







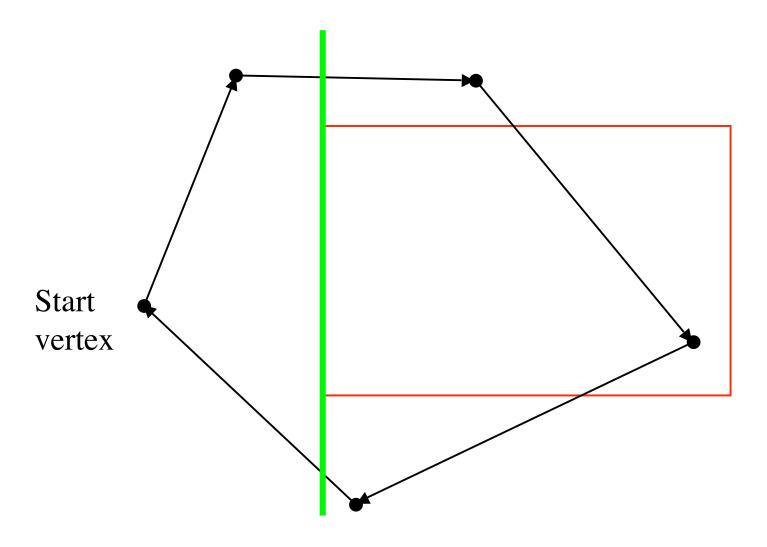


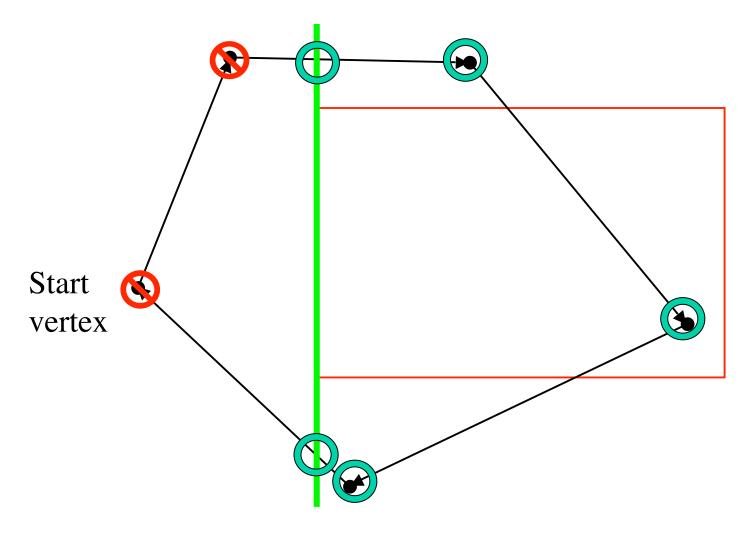


Clipping against current clip edge

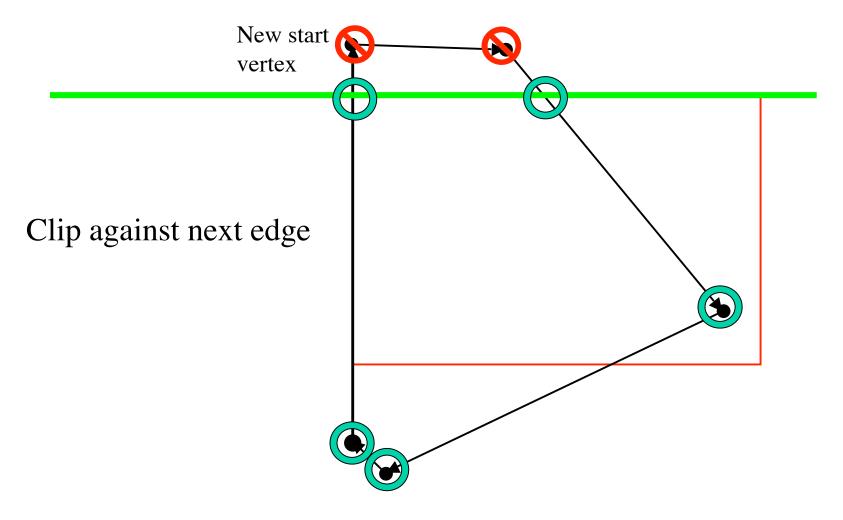
- Polygon is a list of vertices
- Think of process as rewriting polygon, vertex by vertex
- Check start vertex
 - in emit it
 - out ignore it
- Walk along vertices and for each edge consider four cases and apply corresponding action.

- Four cases:
 - polygon edge crosses clip edge going from out to in
 - emit crossing, next vertex
 - polygon edge crosses clip edge going from in to out
 - emit crossing
 - polygon edge goes from out to out
 - emit nothing
 - polygon edge goes from in to in
 - emit next vertex

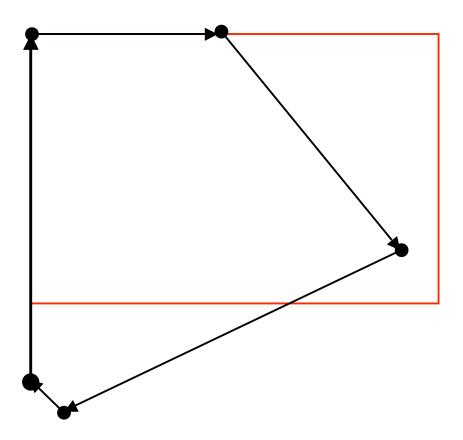




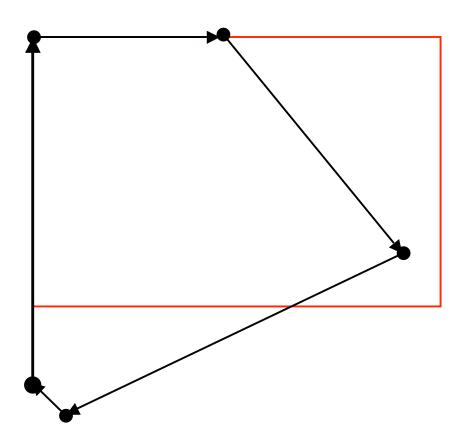
Now have



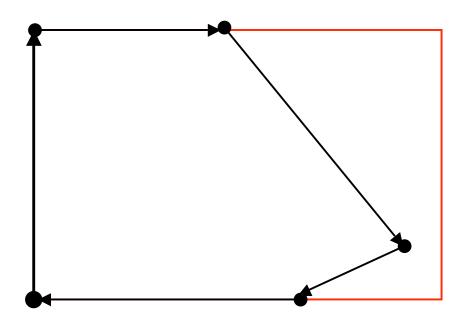
Now have



Clipping against next edge (right) gives



Clipping against final(bottom) edge gives



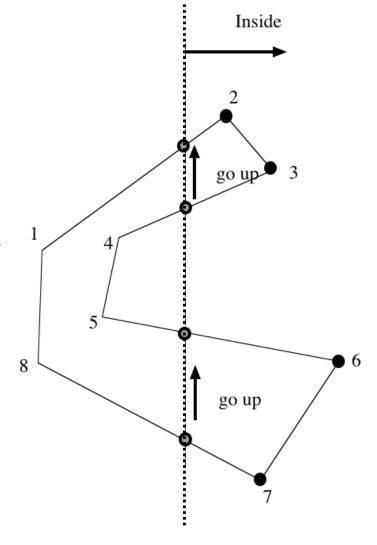
More Polygon clipping

- Notice that we can have a pipeline of clipping processes, one against each edge, each operating on the output of the previous clipper -- substantial advantage.
- Unpleasantness can result from concave polygons; in particular, polygons with empty interior.
- Can modify algorithm for concave polygons (e.g. Weiler Atherton)

Weiler Atherton

For clockwise polygon (starting outside):

- For out-to-in pair, follow usual rule
- For in-to-out pair, follow clip edge (clockwise) and then jump to next vertex (which is on the outside) and start again
- Only get a second piece if polygon is convex



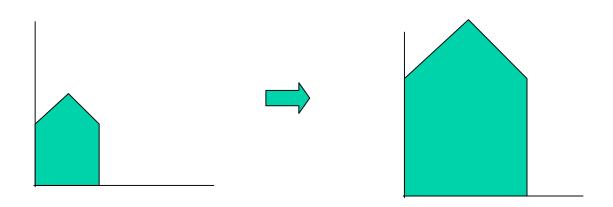
Additional remarks on clipping

- Although everything discussed so far has been in terms of polygons/lines clipped against lines in 2D, all - except Nicholl-Lee-Nicholl - will work in 3D against convex regions without much change.
- This is because the central issue in each algorithm is the inside outside decision as a convex region is the intersection of half spaces.

- Inside-outside decisions can be made for lines in 2D, planes in 3D. e.g testing x>=0
- Hence, all (except N-L-N) can be used to clip:
 - Lines against 3D convex regions (e.g. cubes)
 - Polygons against 3D convex regions (e.g. cubes)
- NLN could work in 3D, but the number of cases increases too much to be practical.

- Represent transformations by matrices
- To transform a point, represented by a vector, multiply the vector by the appropriate matrix.
- To transform lines, transform endpoints
- To transform polygons, transform vertices

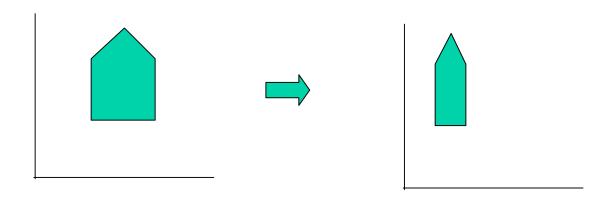
• Scale (stretch) by a factor of k



$$\mathbf{M} = \begin{vmatrix} \mathbf{k} & \mathbf{0} \\ \mathbf{0} & \mathbf{k} \end{vmatrix}$$

(k = 2 in the example)

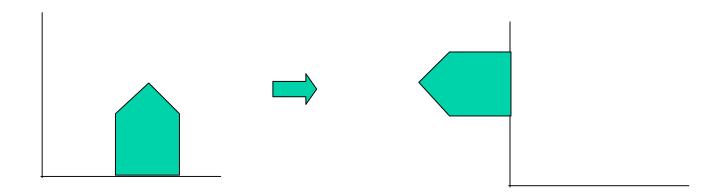
• Scale by a factor of (S_x, S_y)



$$\mathbf{M} = \left| \begin{array}{cc} \mathbf{S}_{\mathbf{x}} & \mathbf{0} \\ \mathbf{0} & \mathbf{S}_{\mathbf{v}} \end{array} \right|$$

 $M = \begin{vmatrix} S_x & 0 \\ 0 & S_y \end{vmatrix}$ (Above, $S_x = 1/2$, $S_y = 1$)

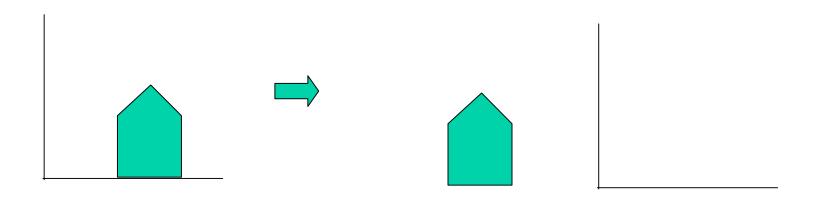
• Rotate around origin by [] (Orthogonal)



$$M = \begin{bmatrix} \cos \Box - \sin \Box \\ \sin \Box \cos \Box \end{bmatrix}$$
 (Above, $\Box = 90^{\circ}$)

• Flip over y axis

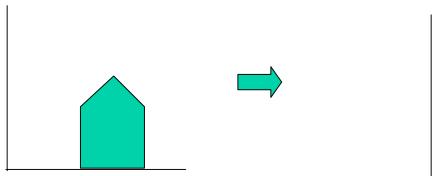
(Orthogonal)



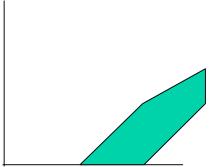
$$\mathbf{M} = \left| \begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right|$$

Flip over x axis is?

• Shear along x axis

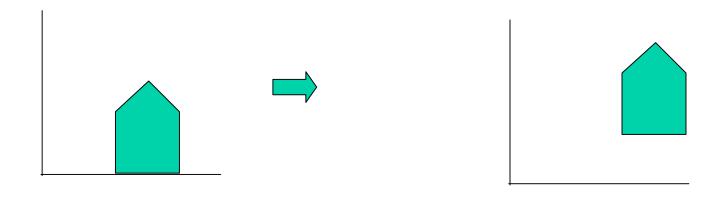


$$\mathbf{M} = \left| \begin{array}{cc} 1 & \mathbf{a} \\ 0 & 1 \end{array} \right|$$



Shear along y axis is?

• Translation
$$(\mathbf{P}_{\text{new}} = \mathbf{P} + \mathbf{T})$$



$$M = ?$$

Homogenous Coordinates

- Represent 2D points by 3D vectors
- (x,y)-->(x,y,1)
- Now a multitude of 3D points (x,y,W) represent the same 2D point, (x/W, y/W, 1)
- Represent 2D transforms with 3 by 3 matrices
- Can now do translations
- Homogenous coordinates have other uses/advantages (later)

2D Translation in H.C.

$$\mathbf{P}_{\text{new}} = \mathbf{P} + \mathbf{T}$$

$$(x', y') = (x, y) + (t_x, t_y)$$

$$\mathbf{M} = \begin{vmatrix} 1 & 0 & \mathbf{t_x} \\ 0 & 1 & \mathbf{t_y} \\ 0 & 0 & 1 \end{vmatrix}$$

2D Scale in H.C.

$$\mathbf{M} = \begin{bmatrix} S_{x} & 0 & 0 \\ 0 & S_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

2D Rotation in H.C.

$$M = \begin{vmatrix} \cos \Box - \sin \Box & 0 \\ \sin \Box & \cos \Box & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

Composition of Transformations (§5.4)

- If we use one matrix, M_1 for one transform and another matrix, M_2 for a second transform, then the matrix for the first transform followed by the second transform is simply $M_2 M_1$
- This generalizes to any number of transforms
- Computing the combined matrix first can save lots of computation

Composition Example

- Matrix for rotation about a point, P
- Problem--we only know how to rotate about the origin.

Composition Example

- Matrix for rotation about a point, P
- Problem--we only know how to rotate about the origin.
- Solution--translate to origin, rotate, and translate back

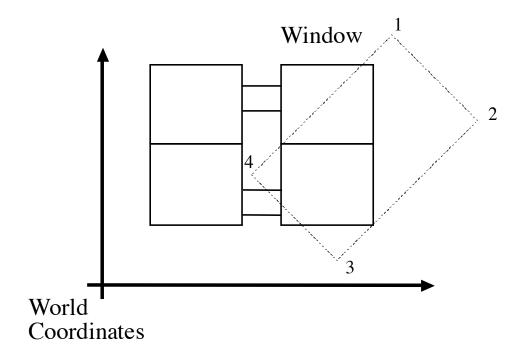
2D transformations (continued)

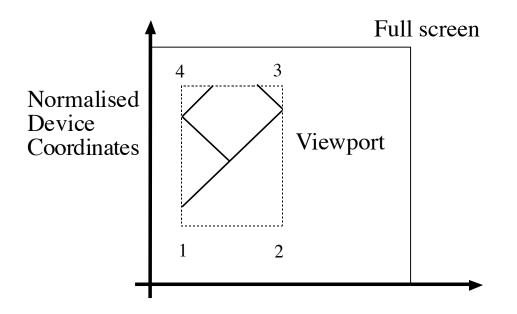
• The transformations discussed so far are invertable (why?). What are the inverses?

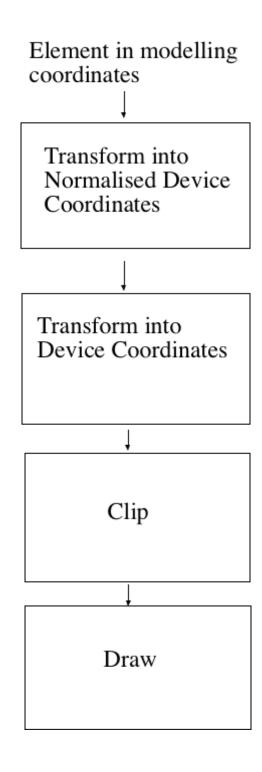
2D viewing

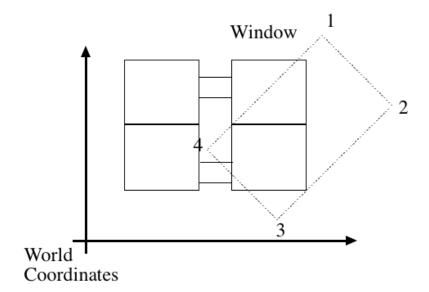
- Three coordinate systems are common in graphics
 - World coordinates or modeling coordinates where the model is defined (meters, miles, etc.)
 - Normalized device coordinates; usually (0-1) in each variable.
 - Device coordinates: the actual coordinates of the pixels on the frame-buffer or the printer

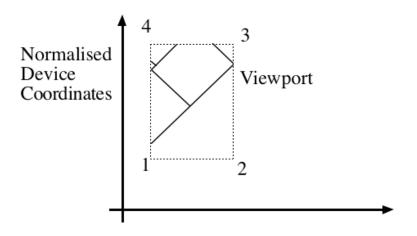
- Need to construct transformations between coordinate systems
- Terminology:
 - window = region on drawing that will be displayed (rectangle)
 - viewport = region in
 NDC's/DC's where this
 rectangle is displayed (often simply entire screen).











- View this as a sequence of transformations in homogenous coords, then determine each element in closed form.
- Compute numerically from point correspondences.