Fast Computation of Generalized Voronoi Diagrams Using Graphics Hardware

Kenneth E. Hoff III, Tim Culver, John Keyser, Ming Lin, and Dinesh Manocha

University of North Carolina at Chapel Hill SIGGRAPH '99

What is a Voronoi Diagram?

Given a collection of geometric primitives, it is a subdivision of space into cells such that all points in a cell are *closer* to one primitive than to any other

Ordinary

- Point sites
- Nearest Euclidean distance

Generalized

- Higher-order site geometry
- Varying distance metrics

Why Should We Compute Them?

It is a fundamental concept

Descartes	Astronomy	1644	"Heavens"
Dirichlet	Math	1850	Dirichlet tesselation
Voronoi	Math	1908	Voronoi diagram
Boldyrev	Geology	1909	area of influence polygons
Thiessen	Meteorology	1911	Theissen polygons
Niggli	Crystallography	1927	domains of action
Wigner & Seitz	Physics	1933	Wigner-Seitz regions
Frank & Casper	Physics	1958	atom domains
Brown	Ecology	1965	areas potentially available
Mead	Ecology	1966	plant polygons
Hoofd et al.	Anatomy	1985	capillary domains
Icke	Astronomy	1987	Voronoi diagram

Why Should We Compute Them?

Useful in a wide variety of applications

Collision Detection
Surface Reconstruction
Robot Motion Planning
Non-Photorealistic Rendering
Surface Simplification
Mesh Generation
Shape Analysis

Outline

- Generalized Voronoi Diagram Computation
 - Exact and Approximate Algorithms
 - Previous Work
 - Our Goal
- Basic Idea
- Our Approach
- Basic Queries
- Applications
- Conclusion

Generalized Voronoi Diagram Computation "Exact" Algorithms

Computes Analytic Boundary

Previous work

- Lee82
- Chiang 92
- Okabe92
- Dutta93
- Milenkovic93
- Hoffmann94
- Sherbrooke 95
- Held97
- Culver99

Previous Work: "Exact" Algorithms

Compute analytic boundaries

but...

- Boundaries composed of high-degree curves and surfaces and their intersections
- Complex and difficult to implement
- Robustness and accuracy problems

Generalized Voronoi Diagram Computation

Exact Algorithm

Approximate Algorithms

Analytic Boundary

Discretize Sites

Discretize Space

Previous work

Lavender92, Sheehy95, Vleugels 95 & 96, Teichmann97

Previous Work: Approximate Algorithms

Provide practical solutions

but...

- Difficult to error-bound
- Restricted to static geometry
- Relatively slow

Our Goal

Approximate generalized Voronoi diagram computation that is:

- Simple to understand and implement
- Easily generalized
- Efficient and practical

with all sources of error fully enumerated

Outline

- Generalized Voronoi Diagram Computation
- Basic Idea
 - Brute-force Algorithm
 - Cone Drawing
 - Graphics Hardware Acceleration
- Our Approach
- Basic Queries
- Applications
- Conclusion

Brute-force Algorithm

Record ID of the closest site to each sample point

Coarse point-sampling result

Finer point-sampling result

Graphics Hardware Acceleration

Simply rasterize the cones using graphics hardware Our 2-part discrete Voronoi diagram representation

Haeberli90, Woo97

Cone Drawing

To visualize Voronoi diagram for points in 2D...

Dirichlet 1850 & Voronoi 1908

Outline

- Generalized Voronoi Diagram Computation
- Basic Idea
- Our Approach
 - Meshing Distance Function
 - Generalizations
 - -3D
 - Sources of Error
- Basic Queries
- Applications
- Conclusion

The Distance Function

Evaluate distance at each pixel for all sites Accelerate using graphics hardware

Approximating the Distance Function

Avoid per-pixel distance evaluation Point-sample the distance function Reconstruct by rendering polygonal mesh

Meshing the Distance Function

Shape of distance function for a 2D point is a cone

Need a bounded-error tessellation of the cone

Shape of Distance Functions

Sweep apex of cone along higher-order site to obtain the shape of the distance function

Example Distance Meshes

Curves

Tessellate curve into a polyline
Tessellation error is **added** to meshing error

Weighted and Farthest Distance

Real-time Motion Planning: Static Scene

Plan motion of piano (arrow) through 100K triangle model

Distance buffer of floorplan used as potential field

Real-time Motion Planning: Dynamic Scene

Plan motion of music stand around moving furniture

Distance buffer of floor-plan used as potential field

Conclusion

Meshing Distance Functions
Graphics Hardware Acceleration

+ Brute-force Approach

Fast and Simple, Approximate Generalized Voronoi Diagrams Bounded Error