Modeling

- Need to usefully represent objects in the world
- Need to provide for easy interaction
 - manual modeling
 - user would like to "fiddle" until it is right (e.g. CAD)
 - user has an idea what an object is like
 - fitting to measurements
 - laser range finder data
- Support rendering/geometric computations

Modeling tools

- Polygon meshes
- Fitting curves to points (from data)
- Fitting curves to points (user interaction)
- Generating shapes with sweeps
- Constructive solid geometry

Polygon Meshes

- Common, straightforward, often built in (e.g. torus mesh)
- Ready to render (many of the representations discussed soon are often be reduced to polygon meshes for rendering)
- Problems
 - Awkward to provide user editing
 - The number of polygons can be very large
 - Some kind of adaptive process makes sense
 - More polygons at high curvature points
 - More polygons where the object is larger
 - Extra care then needs to be taken to avoid temporal aliasing

Explicit curve representation

- Usual representation learned first
- Generally less useful in graphics, but know the term
- Explicit curve is a function of one variable. Examples
 - line, y=m*x + b
 - circle (need to glue two together) $y = \pm sqrt(r*r x*x)$
- Explicit surface is a function of two variables. Examples
 - plane z = m*x + n*y + b

Implicit representation

- Also less useful for this section, but again, know the term
- An implicit curve is given by the vanishing of some functions
 - circle on the plane, x*x + y*y r*r = 0
 - twisted cubic in space, x*y z = 0, x*z y*y=0, x*x y = 0
- An implicit surface is given by the vanishing of some functions
 - sphere in space x*x + y*y + z*z r*r = 0
 - plane a*x + b*y + c*z + d = 0

Parametric representation

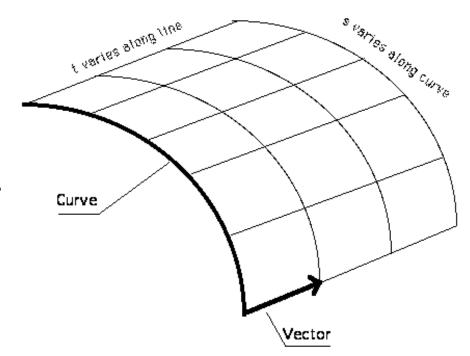
- A parametric **curve** is given as a function of one parameter. Examples:
 - circle as (cos t, sin t)
 - twisted cubic as (t, t*t, t*t*t)
- A parametric **surface** is given as a function of two parameters. Examples:
 - sphere as (cos s cos t, sin s cos t, sin t)
- Advantage easy to compute normal, easy to render, easy to put patches together, ranges can be easy (e.g. half circle)
- Disadvantage intersecting with rays for ray tracing can be hard

Generating Surfaces

- We can construct surfaces from curves in a variety of user intuitive ways
 - Extruded surfaces
 - Generalized cones
 - Surfaces of revolution
 - Sweeping (generalized cylinders)

Extruded surfaces

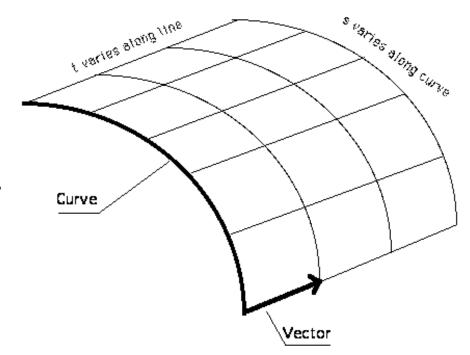
- Geometrical model Pasta machine
- Take curve and "extrude" surface along vector
- Many human artifacts have this form rolled steel, etc.



Parametric formula?

Extruded surfaces

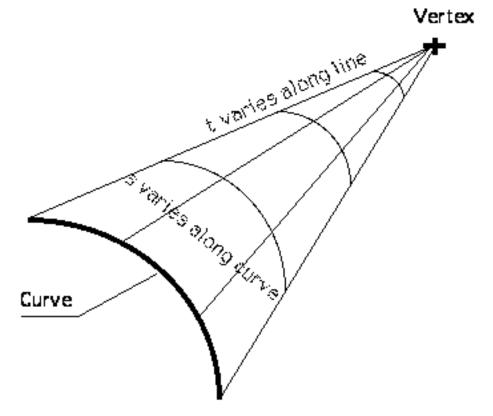
- Geometrical model Pasta machine
- Take curve and "extrude" surface along vector
- Many human artifacts have this form rolled steel, etc.



$$(x(s,t), y(s,t), z(s,t)) = (x_c(s), y_c(s), z_c(s)) + t(v_0, v_1, v_2)$$

Cones

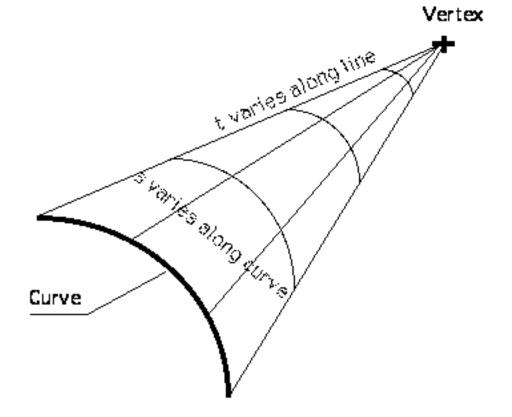
- From every point on a curve, construct a line segment through a single fixed point in space - the vertex
- Curve can be space or plane curve, but shouldn't pass through the vertex



Parametric formula?

Cones

- From every point on a curve, construct a line segment through a single fixed point in space the vertex
- Curve can be space or plane curve, but shouldn't pass through the vertex

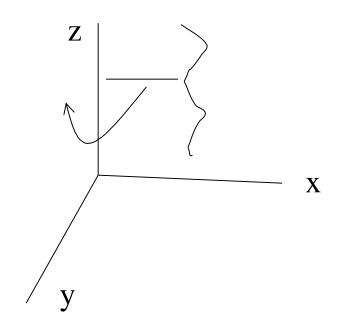


$$(x(s,t), y(s,t), z(s,t)) = (1 \square t)(x_c(s), y_c(s), z_c(s)) + t(v_0, v_1, v_2)$$

Surfaces of revolution

- Plane curve + axis
- "spin" plane curve around axis to get surface
- Choice of plane is arbitrary, choice of axis affects surface
- In the example to the right, curve is on x-z plane, axis is z axis.
- So curve is $(x_c(s), z_c(s))$

Parametric formula?

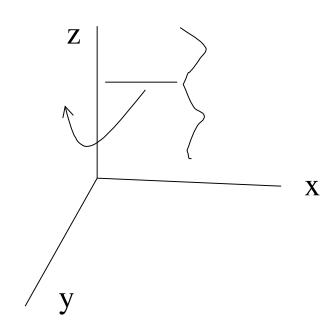


Surfaces of revolution

- Plane curve + axis
- "spin" plane curve around axis to get surface
- Choice of plane is arbitrary, choice of axis affects surface
- In the example to the right, curve is on x-z plane, axis is z axis. (Think of $x_c(s)$ as a radius)

$$(x(s,t), y(s,t), z(s,t)) =$$

$$(x_c(s)\cos(t), x_c(s)\sin(t), z_c(s))$$



Sweeps/Generalized Cylinders

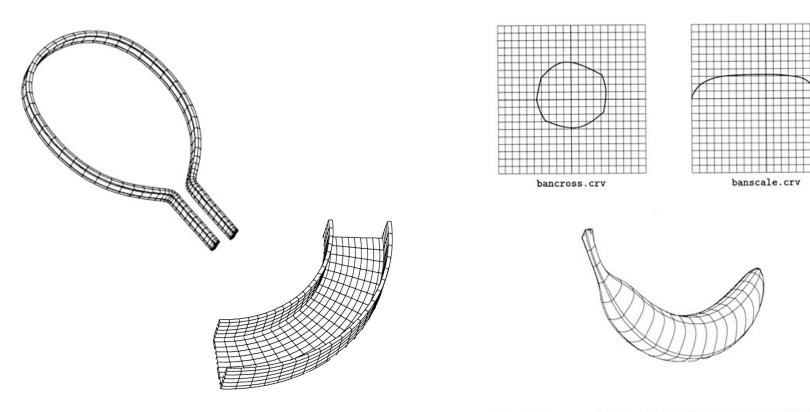
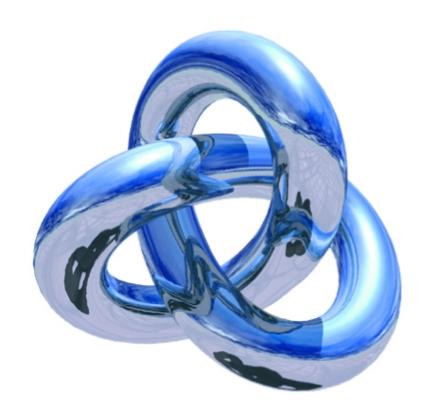


Figure 3.8: Banana example. A banana is represented by an affine transformation surface. The cross section is scaled, translated along z from -1 to 1, and rotated around the y axis. \Box

[Synder 92, via CMU course page]

Optional

Sweeps/Generalized Cylinders

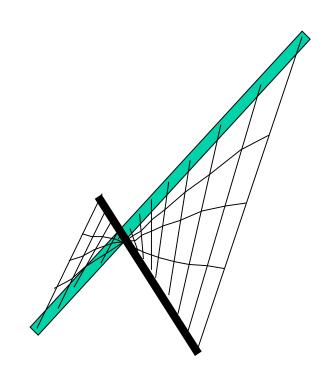


MetaCreations, via CMU course page

Ruled surfaces -1

- Popular, because it's easy to build a curved surface out of straight segments - e.g. pavilions, etc.
- Take two space curves, and join corresponding points same s with line segment.
- Even if space curves are lines, the surface is usually curved.

Ruled Surfaces - 2



Easy to explain, hard to draw!

Ruled surfaces -3

Parameterized form

$$(x(s,t), y(s,t), z(s,t)) =$$

$$(1 \Box t)(x_1(s), y_1(s), z_1(s)) +$$

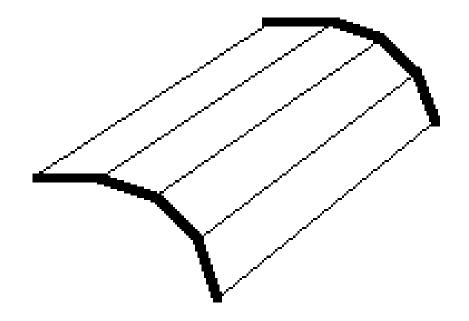
$$t(x_2(s), y_2(s), z_2(s))$$

Normals

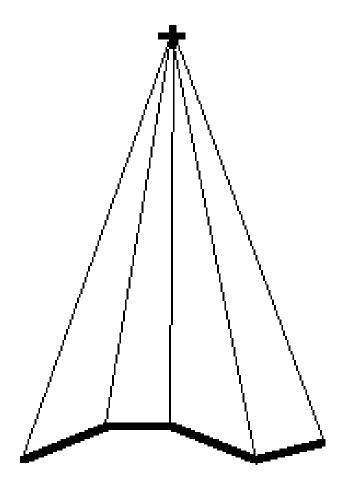
Normal is cross product of tangent in t direction and s direction.

- Examples
 - Cylinder: normal is cross-product of curve tangent and direction vector
 - Surface of revolution: take curve normal and spin round axis

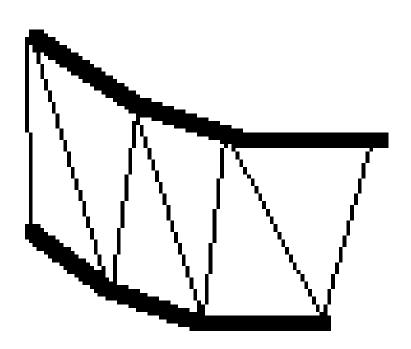
• Cylinders: small steps along curve, straight segments along t generate polygons; exact normal is known.



• Cone: small steps in s generate straight edges, join with vertex to get triangles, normals known exactly except at vertex.



• Surface of revolution: small steps in s generate strips, small steps in t along the strip generate edges; join up to form triangles. Normals known exactly.



Ruled surface: steps in s
 generate polygons, join
 opposite sides to make triangles
 - otherwise "non planar
 polygons" result. Normals
 known exactly.

