Introduction to Computer Graphics

Assignment Five

“Let there be light”

Due date: November 17, 11:59 PM

Credit 9 points (Relative, and roughly absolute weighting)

This assignment may be done in pairs if you prefer. In fact, this is recommended. However, to give those who are working alone a break, the part of the assignment which is optional for those doing projects is also optional for individual submitters.

IMPORTANT: All parts of all assignments should be understood for the exams, regardless of whether your partner did it, or whether that part was “optional” for you (“optional” only applies to implementation).

In this assignment we will improve “pp-world” even more. The same rules regarding input and output and program exit from the previous assignments apply.

Grad students

Add a sphere command. Parameters are x,y,z, and radius. Implement an approximation of a sphere as a collection of polygons. You can use any collection of polygons that resembles a sphere. Try to use a simple strategy! The main requirement is that a sphere must be clearly distinguishable from a stretched/rotated box. You can give your spheres default colors.

Scaling of a sphere with x,X,y,Y,z,Z should scale the sphere uniformly. (Don’t create ellipsoids, unless you want to experiment with them, in which case, go for it, but let us know that you are doing so in the README. Notice that a proper job would either require outputting commands to construct ellipsoids, or perhaps an “ellipsoid” command. Maintaining ellipsoid capability for assignment 6 may provide some real entertainment).

Rotating a sphere can be implemented as a NOP, but translation should work. The user should be able to add a default sphere with the menu. Picking should work on spheres.

End grad student part
In the following, you can use the naïve version of color introduced in class (diagonal model). Also, R,G, or B values that are greater than 255 should be set to 255. OpenGL probably does this for you. (This is called clipping—yes, another use of the word).

Implement the following command to add ambient light:

\[
\text{ambient [r] [g] [b]}
\]

(r,g,b) is the color of a perfect white diffuse reflector. Thus even if there are no lights, your world is not black.

Implement a command to add a single point source. The command should be:

\[
\text{light [x] [y] [z] [r] [g] [b]}
\]

You can assume that it is distant enough so that the $1/r^2$ fall off can be ignored. Compute its direction relative to a polygon based on the center of polygon. It would be best to use the center of mass of the polygon (why?), but the average of the vertices is acceptable. If you want to allow more than one point source, that is fine (note this in the README).

Add a command:

\[
\text{specular [v] [n]}
\]

v is an integer from 0 to 100 which expresses a percentage of the light to be added via the Phong model, and n is the exponent in the Phong model. The command applies to every surface of a preceding object (box or sphere). Apply the specularity to the entire surface, based on the center of the surface. Again, it would be best to use the center of mass of the polygon, but the average of the vertices is acceptable.

Add a command:

\[
\text{mirror [v]}
\]

<v> is an integer from 0 to 100 which expresses a percentage of the light to be reflected. The command applies to every surface of a preceding box, or the preceding sphere. Add a bunch of white to the surface (proportional to <v>) to indicate to the user that this surface is a mirror. IMPORTANT: The mirror will not act like a mirror until assignment 6.

You should add the ability to make things specular and have mirror reflections using picking and user input. You should provide at least two levels of specularity strength, and two levels of specular sharpness (controlled through the exponent). If you choose to provide minimal capability, you need to make sure that the choices given provide noticeable and varied effects. Since I am purposely leaving this part of the interface up to your imagination, be sure to put the user incantations in the README file.

Extra credit

If you would like to improve on the program, be sure to explain what you did in the README file, and it will be considered for extra credit.
Deliverables

You must electronically submit a README containing any relevant information, but at a minimum, your name; an executable (called a5); and a src directory containing source files and a Makefile which can be used to build the executable.

The program must compile and run on one of the graphics machines (gr01, ..., gr08). Put in the README file the machine which you have verified this on.

The turnin name is cs433_hw5.