Clipping references

Hearn and Baker
C-S (lines): p 317
L-B (lines): p 322
N-L (lines): p 325
S-H (poly): p 331
W-A(poly): p 335

Foley at al.
C-S (lines): p 103
L-B (lines): p 107
N-L (lines): N.A.
S-H (poly): p 112
W-A(poly): N.A.

Computing t for intersection point

Condition
\[(P_e \cdot (X_1 + tD)) \cdot n = 0\]

Rearrange
\[(P_e \cdot X_1) \cdot n - D \cdot n\]

And solve
\[\frac{P_e \cdot (X_1) \cdot n}{D \cdot n}\]

Cyrus-Beck/Liang-Barsky--Algorithm

- Compute incoming (PE) t values, which are q_k/p_k for each $p_k<0$
- Compute outgoing (PL) t values, which are q_k/p_k for each $p_k>0$
- Parameter value for small t end of the segment is:
 \[t_{\text{small}} = \max(0, \text{incoming values})\]
- Parameter value for large t end of the segment is:
 \[t_{\text{large}} = \min(1, \text{outgoing values})\]
- If $t_{\text{small}} < t_{\text{large}}$, there is a segment portion in the clip window - compute endpoints by substituting t values (otherwise reject as it is outside).

Cyrus-Beck/Liang-Barsky--Notes

- Works fine if clipping window is not an axis-aligned rectangle. Computing the t values is just more expensive.
- Bibliographic note: Original algorithm was Cyrus-Beck (close to what we have done here). A very similar algorithm was independently developed later by Liang-Barsky with some additional improvements for identifying early rejects as the t values are computed.

Nicholl-Lee-Nicholl clipping

- Fast specialized method
- We will just outline the basic idea
- Consider segment with endpoints: a, b
- Cases:
 - a inside
 - a in edge region
 - a in corner region
- For each case, we generate specialized test regions for b
- Which region b is in is determined by simple "which-side" tests.
- The region b is in determines which edges need to be clipped against.
- Speed is enhanced by good ordering of tests, and caching intermediate results.
Sutherland-Hodgeman polygon clip

- Recall: polygon is convex if any line joining two points inside the polygon also lies inside the polygon; implies that a point is inside if it is on the right side of each edge.
- Clipping each edge of a given polygon doesn’t make sense - how do we reassemble the pieces? We want to arrange doing so on the fly.
- Clipping the polygon against each edge of the clip window in sequence works if the clip window is convex.
- (Note similarity to Sutherland-Cohen line clipping)
Sutherland-Hodgeman polygon clip

Polygon to clip

Then the next

Clipped polygon

Clip window

Start vertex

• Polygon is a list of vertices
 • Think of process as rewriting polygon, vertex by vertex
 • Check start vertex
 • in - emit it
 • out - ignore it
 • Walk along vertices and for each edge consider four cases and apply corresponding action.

• Four cases:
 - polygon edge crosses clip edge going from out to in
 • emit crossing, next vertex
 - polygon edge crosses clip edge going from in to out
 • emit crossing
 - polygon edge goes from out to out
 • emit nothing
 - polygon edge goes from in to in
 • emit next vertex

• Polygon is a list of vertices
 • Think of process as rewriting polygon, vertex by vertex
 • Check start vertex
 • in - emit it
 • out - ignore it
 • Walk along vertices and for each edge consider four cases and apply corresponding action.

• Four cases:
 - polygon edge crosses clip edge going from out to in
 • emit crossing, next vertex
 - polygon edge crosses clip edge going from in to out
 • emit crossing
 - polygon edge goes from out to out
 • emit nothing
 - polygon edge goes from in to in
 • emit next vertex
polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
polygon edge crosses clip edge going from in to out ==> emit crossing
polygon edge goes from out to out ==> emit nothing
polygon edge goes from in to in ==> emit next vertex

Now have

polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
polygon edge crosses clip edge going from in to out ==> emit crossing
polygon edge goes from out to out ==> emit nothing
polygon edge goes from in to in ==> emit next vertex

Now have

polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
polygon edge crosses clip edge going from in to out ==> emit crossing
polygon edge goes from out to out ==> emit nothing
polygon edge goes from in to in ==> emit next vertex

Now have

polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
polygon edge crosses clip edge going from in to out ==> emit crossing
polygon edge goes from out to out ==> emit nothing
polygon edge goes from in to in ==> emit next vertex

Now have

polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
polygon edge crosses clip edge going from in to out ==> emit crossing
polygon edge goes from out to out ==> emit nothing
polygon edge goes from in to in ==> emit next vertex

Now have

polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
polygon edge crosses clip edge going from in to out ==> emit crossing
polygon edge goes from out to out ==> emit nothing
polygon edge goes from in to in ==> emit next vertex

Now have

polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
polygon edge crosses clip edge going from in to out ==> emit crossing
polygon edge goes from out to out ==> emit nothing
polygon edge goes from in to in ==> emit next vertex

Now have

polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
polygon edge crosses clip edge going from in to out ==> emit crossing
polygon edge goes from out to out ==> emit nothing
polygon edge goes from in to in ==> emit next vertex

Now have

polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
polygon edge crosses clip edge going from in to out ==> emit crossing
polygon edge goes from out to out ==> emit nothing
polygon edge goes from in to in ==> emit next vertex

Now have

polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
polygon edge crosses clip edge going from in to out ==> emit crossing
polygon edge goes from out to out ==> emit nothing
polygon edge goes from in to in ==> emit next vertex

Now have

polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
polygon edge crosses clip edge going from in to out ==> emit crossing
polygon edge goes from out to out ==> emit nothing
polygon edge goes from in to in ==> emit next vertex

Now have

polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
polygon edge crosses clip edge going from in to out ==> emit crossing
polygon edge goes from out to out ==> emit nothing
polygon edge goes from in to in ==> emit next vertex

New start vertex

Clip against next edge

polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
polygon edge crosses clip edge going from in to out ==> emit crossing
polygon edge goes from out to out ==> emit nothing
polygon edge goes from in to in ==> emit next vertex

Polygon edge goes from out to out

polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
polygon edge crosses clip edge going from in to out ==> emit crossing
polygon edge goes from out to out ==> emit nothing
polygon edge goes from in to in ==> emit next vertex

Polygon edge goes from in to in

polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
polygon edge crosses clip edge going from in to out ==> emit crossing
polygon edge goes from out to out ==> emit nothing
polygon edge goes from in to in ==> emit next vertex

Polygon edge goes from in to in

polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
polygon edge crosses clip edge going from in to out ==> emit crossing
polygon edge goes from out to out ==> emit nothing
polygon edge goes from in to in ==> emit next vertex

Polygon edge goes from in to in

polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
polygon edge crosses clip edge going from in to out ==> emit crossing
polygon edge goes from out to out ==> emit nothing
polygon edge goes from in to in ==> emit next vertex

Polygon edge goes from in to in

polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
polygon edge crosses clip edge going from in to out ==> emit crossing
polygon edge goes from out to out ==> emit nothing
polygon edge goes from in to in ==> emit next vertex

Polygon edge goes from in to in

polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
polygon edge crosses clip edge going from in to out ==> emit crossing
polygon edge goes from out to out ==> emit nothing
polygon edge goes from in to in ==> emit next vertex

Polygon edge goes from in to in

polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
polygon edge crosses clip edge going from in to out ==> emit crossing
polygon edge goes from out to out ==> emit nothing
polygon edge goes from in to in ==> emit next vertex

Polygon edge goes from in to in
More Polygon clipping

- Notice that we can have a pipeline of clipping processes, one against each edge, each operating on the output of the previous clipper -- substantial advantage.
- Unpleasantness can result from concave polygons; in particular, polygons with empty interior.
- Can modify algorithm for concave polygons (e.g. Weiler Atherton)

Weiler Atherton

For clockwise polygon (starting outside):

- For out-to-in pair, follow usual rule
- For in-to-out pair, follow clip edge (clockwise) and then jump to next vertex (which is on the outside) and start again
- Only get a second piece if polygon is convex

Additional remarks on clipping

- Although everything discussed so far has been in terms of polygons/lines clipped against lines in 2D, all -- except Nicholl-Lee-Nicholl -- will work in 3D against convex regions without much change.
- This is because the central issue in each algorithm is the inside outside decision as a convex region is the intersection of half spaces.

- Inside-outside decisions can be made for lines in 2D, planes in 3D.
 - e.g testing \(d \cdot \omega > 0 \)
- Hence, all (except N-L-N) can be used to clip:
 - Lines against 3D convex regions (e.g. cuboids)
 - Polygons against 3D convex regions (e.g. cubes)
- N-L-N could work in 3D, but the number of cases increases too much to be practical.