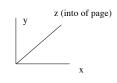
Transformations in 3D

- Right hand coordinate system (conventional, i.e., in math)
- In graphics a LHS is sometimes also convenient (Easy to switch between them--later).



Transformations in 3D

- Homogeneous coordinates now have four components traditionally, $(x,\,y,\,z,\,w)$
 - ordinary to homogeneous: $(x, y, z) \rightarrow (x, y, z, 1)$
- homogeneous to ordinary: (x, y, z, w) -> (x/w, y/w, z/w)
 Again, translation can be expressed as a multiplication.

Transformations in 3D

· Translation:

$$\begin{bmatrix} x_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \\ y$$

3D transformations

- · Anisotropic scaling:
- Shear (one example):

$$\begin{bmatrix} x_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \\ y_8 \\ y_9 \\ y$$

Rotations in 3D

- 3 degrees of freedom
- Orthogonal, det(R)=1
- · We can easily determine formulas for rotations about each of the
- · For general rotations, there are many possible representations—we will use a sequence of rotations about coordinate axes.
- Sign of rotation follows the Right Hand Rule--point thumb along axis in direction of increasing ordinate--then fingers curl in the direction of positive rotation).

Rotations in 3D

• About x-axis

Rotations in 3D

About y-axis

Rotations in 3D

• About z-axis

$$M = \begin{array}{c|cccc} & \cos \square & ||\sin \square & 0 & 0 & |\\ & \sin \square & \cos \square & 0 & 0\\ & 0 & 0 & 1 & 0\\ & 0 & 0 & 0 & 1 \end{array}$$

Commuting transformations

- If A and B are matrices, does AB=BA? Always? Ever?
- What if A and B are restricted to particular transformations?
- What about the 2D transformations that we have studied?
- How about if A and B are restricted to be on of the three specific 3D rotations just introduced, such as rotation about the Z axis?

Demo

Commuting transformations

- If A and B are matrices, does AB=BA? Always? Ever?
- What if A and B are restricted to particular transformations?
- What about the 2D transformations that we have studied?
- How about if A and B are restricted to be on of the three specific 3D rotations just introduced, such as rotation about the Z axis?

Answer: In general AB != BA (matrix multiplication is not commutative). But if A and B are either translations or scalings, then multiplication is commutative. The same applies to rotations restricted to be about one of the 3 axis in 3D.

Rotations in 3D

About X axis

• 90 degrees about X axis?

Rotations in 3D

$$\left|\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & \Box 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right|$$

Rotations in 3D

Rotations in 3D

$$\begin{bmatrix} 0 & 0 & || 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotations in 3D

• 90 degrees about X then Y

$$\begin{vmatrix} 0 & 0 & \Box 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & \Box 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = ?$$

$$Yrot \qquad Xrot$$

Rotations in 3D

• 90 degrees about X then Y

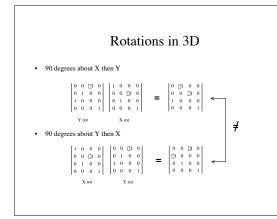
Rotations in 3D

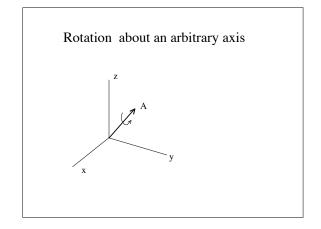
90 degrees about X then Y

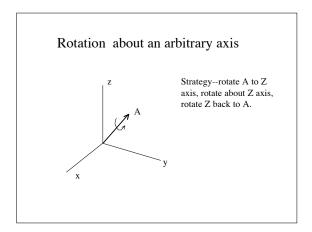
$$\begin{vmatrix} 0 & 0 & || & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{vmatrix} = \begin{vmatrix} 0 & || & 1 & 0 & 0 \\ 0 & 0 & || & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

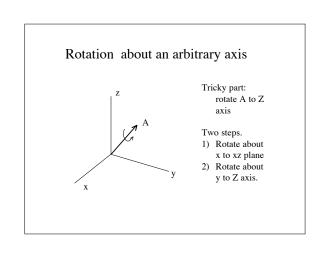
90 degrees about Y then X

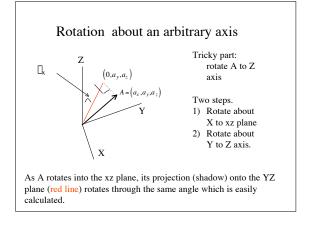
$$\left| \begin{smallmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & \square 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{smallmatrix} \right| \left| \begin{smallmatrix} 0 & 0 & \square 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{smallmatrix} \right| = ?$$

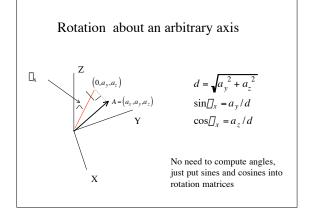




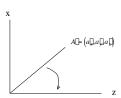








Rotation about an arbitrary axis



Apply $R_x(\underline{\square}_x)$ to A and renormalize to get A' $R_y(\underline{\square}_y)$ should be easy, but note that it is clockwise.

Rotation about an arbitrary axis

Final form is

$$R_{x}(\square \square_{x})R_{y}(\square \square_{y})R_{z}(\square_{z})R_{y}(\square_{y})R_{x}(\square_{x})$$