Transformations in 3D

- Right hand coordinate system (conventional, i.e., in math)
- In graphics a LHS is sometimes also convenient (Easy to switch between them--later).
Transformations in 3D

• Homogeneous coordinates now have four components - traditionally, (x, y, z, w)
 – ordinary to homogeneous: (x, y, z) -> (x, y, z, 1)
 – homogeneous to ordinary: (x, y, z, w) -> (x/w, y/w, z/w)

• Again, translation can be expressed as a multiplication.
Transformations in 3D

- Translation:

\[
\begin{bmatrix}
1 & 0 & 0 & tx \\
0 & 1 & 0 & ty \\
0 & 0 & 1 & tz \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
3D transformations

- **Anisotropic scaling:**

\[
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix} =
\begin{bmatrix}
sx & 0 & 0 & 0 \\
0 & sy & 0 & 0 \\
0 & 0 & sz & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]

- **Shear (one example):**

\[
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & a & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
Rotations in 3D

- 3 degrees of freedom
- Orthogonal, det(R)=1
- We can easily determine formulas for rotations about each of the axes
- For general rotations, there are many possible representations—we will use a sequence of rotations about coordinate axes.
- Sign of rotation follows the Right Hand Rule--point thumb along axis in direction of increasing ordinate--then fingers curl in the direction of positive rotation).
Rotations in 3D

- About x-axis

\[
M = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & \cos \theta & \sin \theta & 0 & 0 \\
0 & -\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{bmatrix}
\]
Rotations in 3D

- About y-axis

\[M = \begin{bmatrix}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \]
Rotations in 3D

- About z-axis

\[
M = \begin{bmatrix}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Commuting transformations

• If A and B are matrices, does AB=BA? Always? Ever?
• What if A and B are restricted to particular transformations?
• What about the 2D transformations that we have studied?
• How about if A and B are restricted to be on of the three specific 3D rotations just introduced, such as rotation about the Z axis?
Demo
Commuting transformations

- If A and B are matrices, does $AB = BA$? Always? Ever?
- What if A and B are restricted to particular transformations?
- What about the 2D transformations that we have studied?
- How about if A and B are restricted to be on of the three specific 3D rotations just introduced, such as rotation about the Z axis?

Answer: In general $AB \neq BA$ (matrix multiplication is not commutative). But if A and B are either translations or scalings, then multiplication is commutative. The same applies to rotations restricted to be about one of the 3 axis in 3D.
Rotations in 3D

• About X axis

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \cos q & \sin q & 0 \\
0 & -\sin q & \cos q & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

• 90 degrees about X axis?
Rotations in 3D

- About X axis

\[
\begin{vmatrix}
1 & 0 & 0 & 0 \\
0 & \cos q & \sin q & 0 \\
0 & \sin q & \cos q & 0 \\
0 & 0 & 0 & 1
\end{vmatrix}
\]

- 90 degrees about X axis

\[
\begin{vmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{vmatrix}
\]
Rotations in 3D

• About Y axis

\[
\begin{pmatrix}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta \\
\end{pmatrix}
\]

• 90 degrees about Y-axis?
Rotations in 3D

- About Y axis

 $\begin{bmatrix}
 \cos(q) & 0 & \sin(q) & 0 \\
 0 & 1 & 0 & 0 \\
 \sin(q) & 0 & \cos(q) & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}$

- 90 degrees about Y axis

 $\begin{bmatrix}
 0 & 0 & 1 & 0 \\
 0 & 1 & 0 & 0 \\
 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}$
Rotations in 3D

- 90 degrees about X then Y

\[
\begin{pmatrix}
0 & 0 & \overline{1} & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & \overline{1} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
= ?

Y rot \quad X rot
Rotations in 3D

- 90 degrees about X then Y

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{array}
\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
= \begin{array}{ccc}
0 & \mathbf{1} & 0 \\
0 & 0 & \mathbf{1} \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\]

Y rot \quad X rot
Rotations in 3D

- 90 degrees about X then Y

\[
\begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
= \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Y rot \quad X rot

- 90 degrees about Y then X

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
= ?
\]

X rot \quad Y rot
Rotations in 3D

- 90 degrees about X then Y

\[
\begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
=
\begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Y rot X rot

- 90 degrees about Y then X

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
=
\begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

X rot Y rot

≠
Rotation about an arbitrary axis
Rotation about an arbitrary axis

Strategy--rotate A to Z axis, rotate about Z axis, rotate Z back to A.
Rotation about an arbitrary axis

Tricky part:
rotate A to Z axis

Two steps.
1) Rotate about x to xz plane
2) Rotate about y to Z axis.
Rotation about an arbitrary axis

As \(A \) rotates into the xz plane, its projection (shadow) onto the YZ plane (red line) rotates through the same angle which is easily calculated.

Tricky part:
- rotate \(A \) to Z axis

Two steps.
1) Rotate about X to xz plane
2) Rotate about Y to Z axis.
Rotation about an arbitrary axis

\[d = \sqrt{a_y^2 + a_z^2} \]

\[\sin \theta_x = \frac{a_y}{d} \]

\[\cos \theta_x = \frac{a_z}{d} \]

No need to compute angles, just put sines and cosines into rotation matrices
Rotation about an arbitrary axis

Apply $R_x(\Box_x)$ to A and renormalize to get A'.

$R_y(\Box_y)$ should be easy, but note that it is clockwise.
Rotation about an arbitrary axis

Final form is

$$R_x(\square x)R_y(\square y)R_z(\square z)R_y(\square y)R_x(\square x)$$