

Lambertian Reflection

What about more lights?

If they are point sources, just add them up. Note that this means that extended sources can be approximated by multiple point sources and/or integration.

Applies to non-Lambertian surfaces also.

Special cases to be handled later: Very long thin source and large, planer source.

Lambertian Reflection

Most the world is not Lambertian

Lambertian assumption failures

Lambertian Reflection

Most the world is not Lambertian

Lambertian assumption failures

Rough surfaces--important example--the moon is not Lambertian

Dielectrics (plastics, many paints)

Metallic surfaces

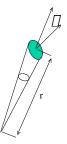
Skin

More General Reflection

- Many effects when light strikes a surface -- could be:
 - absorbed (could depend on incoming angle)
 - transmitted
 - reflected
 - scattered (in a variety of directions!)
- · Typically assume that
 - surfaces don't fluoresce
 - surfaces don't emit light (i.e., they are not sources)
 - all the light leaving a point is due to that arriving at that point

More General Reflection

- Can model this situation with the Bidirectional Reflectance Distribution Function (BRDF)
- This is the ratio of what comes out to what came in
- What comes out <--> "radiance"
- What goes in <--> "irradiance"
- Both are characterized by two angles
- Thus BRDF is a function of four angles
- · Technical discussion that follows is optional


Optional

Solid Angle

- Analogous to measuring angles radians
- The solid angle subtended by a patch area dA is given by

$$d\Box = \frac{dA \cos\Box}{r^2}$$

• Units are steradians (sr)

