Anti-Aliasing (re-cap)

- Want to present the viewer with a facsimile of what they expect to see with a finite number of discrete pixels.

Each pixel can cover a variety of objects to various degrees. Aliasing due to limited sampling rate. Jagged edges due to discrete pixels.

Aliasing via filtering and then sampling

- Ideal “smoothing” filter is a Gaussian.*
- Easier and faster to approximate Gaussian with a cone.

$$z = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x^2+y^2)}{2\sigma^2}\right)$$

To calculate brightness for pixel with center here

Multiply and integrate here.

To calculate brightness for pixel with center here

Multiply and integrate here.

* Gaussian filter

Easier and faster to approximate Gaussian with a cone.
Line with no width

- If line has no width, then it is a line of “delta” functions.
- Algorithmically simpler: Just integrate intersection of blurring function and line in 1D (along the line).
- Normalization--ensure that if the line goes through the filter center, that the pixel gets the full color of the line.

Line with cone example

Bigger integral so this square is brighter

Approximating a Gaussian filter with a cone

Parabolic boundary which can be approximated with the lines shown in red. In either case, an analytical solution can be computed so that filtering can be done by a formula (rather than numerical integration).
Scan converting polygons

(Text Section 3-15 (does not cover the details)
Foley et al: Section 3.5 (see 3.4 also))

Filling polygons

- Polygons are defined by a list of edges - each is a pair of vertices (order counts)
- Assume that each vertex is an integer vertex, and polygon lies within frame buffer
- Need to define what is inside and what is outside

Is a point inside?

- Easy for simple polygons - no self intersections
- For general polygons, three rules are used:
 - non-exterior rule
 - (Can you get arbitrarily far away from the polygon without crossing a line)
 - non-zero winding number rule
 - parity rule (most common--this is the one we will generally use)
Non-zero winding number--details

Winding number at final point is non-zero, so point is inside by this rule.

Parity rule--details

Flip once for each line crossing. Value at point in question is 1, so point is inside.

Sweep fill

Which pixel is inside?

- Each pixel is a sample, at coordinates \((x, y)\).
 - imagine a piece of paper, where coordinates are continuous
 - pixels are samples on a grid of a drawing on this piece of paper.
- If ideal point (corresponding to grid center) is inside, pixel is inside. (Easy case)
Computing which pixels are inside

In the context of the sweep fill algorithm to come soon: Suppose we are sweeping from left to right. Then for pixels with **fractional** intersections (general case):

1) Going from outside to inside, then take true intersection, and **round up** to get first interior point.
2) Going from inside to outside, then take true intersection, and **round down** to get last interior point.

Note that if we are considering an adjacent polygon, 1) and 2) are reversed, so it should be clear that for most cases, the pixels owned by each polygon is well defined (and we don’t erase any when drawing the other polygon).

Ambiguous cases

- What if a pixel is exactly on the edge? (non-fractional case)
- Polygons are usually adjacent to other polygons, so we want a rule which will give the pixel to *one* of the adjacent polygons or the *other* (as much as possible).
- Basic rule: Draw left and bottom edges
- Restated in pseudo-code
 - horizontal edge? \((x+\delta, y+\varepsilon) \) is in, pixel is in
 - otherwise if \((x+\delta, y) \) is in, pixel is in
- In practice one implements a sweep fill procedure that is consistent with this rule (we don’t test the rule explicitly)

Ambiguous inside cases (?)
Sweep fill

- Reduces to filling many spans
- Inside/outside parity is relatively straightforward
- Need to compute the spans, then fill
- Need to update the spans for each scan
- Need to implement “inside” rule for ambiguous cases.