Homogenous Coordinates

- Represent 2D points by 3D vectors
- \((x,y)\rightarrow(x,y,1)\)
- Now a multitude of 3D points \((x,y,W)\) represent the same 2D point, \((x/W, y/W, 1)\)
- Represent 2D transforms with 3 by 3 matrices
- Can now do translations
- Homogenous coordinates have other uses/advantages (later)

2D Translation in H.C.

\[P_{\text{new}} = P + T \]
\[(x', y') = (x, y) + (t_x, t_y)\]

\[
M = \begin{bmatrix}
1 & 0 & t_x \\
0 & 1 & t_y \\
0 & 0 & 1 \\
\end{bmatrix}
\]

2D Scale in H.C.

\[
M = \begin{bmatrix}
S_x & 0 & 0 \\
0 & S_y & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

2D Rotation in H.C.

\[
M = \begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]
Composition of Transformations

• If we use one matrix, M_1 for one transform and another matrix, M_2 for a second transform, then the matrix for the first transform followed by the second transform is simply $M_2 M_1$
• This generalizes to any number of transforms
• Computing the combined matrix first and then applying it to many objects, can save lots of computation

Composition Example

• Matrix for rotation about a point, P
• Problem--we only know how to rotate about the origin.

Composition Example

• Matrix for rotation about a point, P
• Problem--we only know how to rotate about the origin.
• Solution--translate to origin, rotate, and translate back

2D transformations (continued)

• The transformations discussed so far are invertable (why?). What are the inverses?
2D viewing

- Three coordinate systems are common in graphics
 - World coordinates or modeling coordinates - where the model is defined (meters, miles, etc.)
 - Normalized device coordinates; usually (0-1) in each variable.
 - Device coordinates: the actual coordinates of the pixels on the frame-buffer or the printer
- Need to construct transformations between coordinate systems
- Terminology:
 - window = region on drawing that will be displayed (rectangle)
 - viewport = region in NDC’s/DC’s where this rectangle is displayed (often simply entire screen).

Determining the transform

- **Plan A**: Consider this as a sequence of transformations in homogenous coords, then determine each element in closed form.
- **Plan B**: Compute numerically from point correspondences (not covered in detail in 2006)

- write \((wx_i, wy_i)\) for coordinates of \(i^{th}\) point on window

 - translation is:

 \[
 \begin{pmatrix}
 x' \\
 y'
 \end{pmatrix} = \begin{pmatrix}
 1 & 0 & -wx \\
 0 & 1 & -wy \\
 0 & 0 & 1
 \end{pmatrix} \begin{pmatrix}
 x \\
 y
 \end{pmatrix}
 \]

 (overbar denotes average over vertices, i.e., 1,2,3,4)
Rotate to line up with axes

\[
\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}
\]

(Need to compute theta)

Flip

\[
\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}
\]

(Vertex order does not correspond, need to flip)

Scale and translate

\[
\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} w_{new} & 0 & x_{new} \\ w_{old} & h_{new} & y_{new} \\ 0 & h_{old} & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}
\]

The variables labeled “new” are in either device coordinates or normalized device coordinates (depending on what you want).

The variables labeled “old” are in world coordinates.

- Get overall transformation by multiplying transforms.
- This gives a single transformation matrix, whose elements are functions of window/viewport coordinates.

\[
x' = M_{\text{translate origin to viewport cog, scale}} M_{\text{flip}} M_{\text{rotate}} M_{\text{translate window cog->origin}} x
\]

NDC’s/DC’s

World coords

(cog==window center of gravity)
Hierarchical modeling

- Consider constructing a complex 2d drawing: e.g. an animation showing the plan view of a building, where the doors swing open and shut.

Plan B

Work directly from the fact that the transform we seek must map 1 to 1', 2 to 2', 3 to 3'.

Not covered in 2006
Hierarchical modeling

- Model form
 - Directed acyclic graph.
 - Each node consists of 0 or more objects (lines, polygons, etc).
 - Each edge is a transformation

- There can be many edges joining two nodes (e.g. in the case of the corridor - many copies of the same room model, each transformed differently).

- Every graphics API supports hierarchies - some directly (meaning you have to learn a language to express the model) some indirectly with a matrix stack

Matrix stacks and rendering

- Matrix stack:
 - Stack of matrices used for rendering
 - Applied in sequence.
 - Pop=remove last matrix
 - Push=append a new matrix

- In previous example, body-device transformation comes from door-device transformation by popping door-room and pushing body-room
Matrix stacks and rendering

- Algorithm for rendering a hierarchical model:
 - stack is $T_{\text{root}}^{\text{device}}$
 - render (root)
- Recursive definition of render (node)
 - if node has object, render it
 - for each child:
 - push transformation
 - render (child)
 - pop transformation

Transformations in 3D

- Right hand coordinate system (conventional, i.e., in math)
- In graphics a LHS is sometimes also convenient (Easy to switch between them–later).

Now to render door on first room in first corridor, stack looks like: W C1 R1 D1
- For efficiency we would store “running” products, IE, the stack contains: W W*C1, W*C1*R1, W*C1*R1*D1.
- We do not need two copies of corridor, or 16 copies of body; we render one copy using 16 different transformations. This is known as instancing
- Animation requires care: if D1 is a single function of time, all doors will swing open and closed at the same time.
Transformations in 3D

- Homogeneous coordinates now have four components - traditionally,
 \((x, y, z, w)\)
 - ordinary to homogeneous: \((x, y, z) \rightarrow (x, y, z, 1)\)
 - homogeneous to ordinary: \((x, y, z, w) \rightarrow (x/w, y/w, z/w)\)
- Again, translation can be expressed as a multiplication.

3D transformations

- Anisotropic scaling:
 \[
 \begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
 \end{bmatrix} =
 \begin{bmatrix}
 sx & 0 & 0 & 0 \\
 0 & sy & 0 & 0 \\
 0 & 0 & sz & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 z \\
 1
 \end{bmatrix}
 \]

- Shear (one example):
 \[
 \begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
 \end{bmatrix} =
 \begin{bmatrix}
 1 & 0 & a & 0 \\
 0 & 1 & 0 & b \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 z \\
 1
 \end{bmatrix}
 \]

Rotations in 3D

- 3 degrees of freedom
- Orthogonal, \(\det(R)=1\)
- We can easily determine formulas for rotations about each of the axes
- For general rotations, there are many possible representations—we will use a sequence of rotations about coordinate axes.
- Sign of rotation follows the Right Hand Rule--point thumb along axis in direction of increasing ordinate--then fingers curl in the direction of positive rotation).
Rotations in 3D

- **About x-axis**

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

- **About y-axis**

\[
\begin{bmatrix}
\cos \theta & 0 & -\sin \theta & 0 \\
0 & 1 & 0 & 0 \\
\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

- **About z-axis**

\[
\begin{bmatrix}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]