Image Formation (Spectral)

- Note that by this model, light capture is linear.
- Formally this means

?

Image Formation (Spectral)

- Note that image formation loses spectral information
- This means that two quite different spectra can map into the same color

Image Formation (Spectral)

- Note that by this model, light capture is linear.
- Formally this means:

$$L_1(\lambda) -> \rho_1^{(k)}$$
 and $L_2(\lambda) -> \rho_2^{(k)}$

• Then:

$$aL_1(\lambda) + bL_2(\lambda) - > a\rho_1^{(k)} + b\rho_2^{(k)}$$

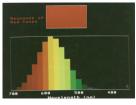
One tricky bit

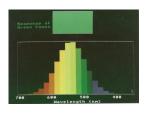
Electronic capture (e.g. "CCD") is linear, but typically the circuitry will put the sensor responses through a non-linear mapping (e.g. approximate square root).

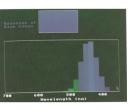
This is because display is usually either non-linear due to physics (CRT) or by design (to be like a CRT). This is better because there is less relative noise where humans will notice it.

(A bit more on this later).

Causes of color


- The sensation of color is caused by the brain.
- One way to get it is through a **response** of the eye to the presence/absence of light at various wavelengths.
- Dreaming, hallucination, etc.
- Pressure on the eyelids


Trichromaticity


Empirical fact--colors can be approximately described/matched by three quantities (assuming normal color vision).

Need to reconcile this observation with the spectral characterization of light

Color receptors

"Long" cone

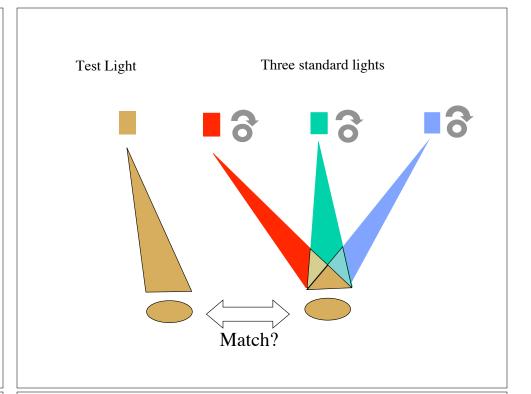
"Medium" cone

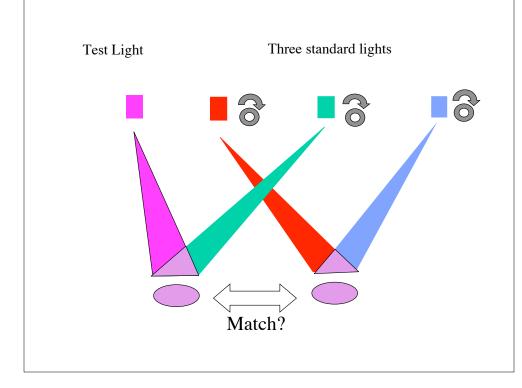
"Short" cone

Some understanding results from an analogy with camera sensors

Directly determining the camera like sensitivity response is hard!

Colour Reproduction


Motivates specifying color numerically (there are other reasons to do this also)


General (man in the street) observation--color reproduction *sort of* works.

Specifying Colour

Trichromacy

Experimental fact about people (with "normal" colour vision)---matching works (for reasonable lights), provided that we are sometimes allowed negative values.

Our "knob" positions correspond to (X,Y,Z) in the standard colorimetry system.

Technical detail: (X,Y,Z) are actually arranged to be **positive** by a linear transformation, but these "knob" positions **cannot** correspond to any **physical** light.