Clipping

• 2D elements are laid out in a convenient (often user based) coordinate system--perhaps km for a map--and then transformed to a frame buffer coordinate system.
• Objects that are to be drawn must lie inside frame buffer, and may have to lie inside particular region - e.g. viewport.
• We want to dodge additional expensive operations on objects or parts of objects that won’t be displayed.
• How do we ensure line/polygon lies inside a region?

Clipping in the 2D pipeline

Clipping references

Hearn and Baker
C-S (lines): p 317
L-B (lines): p 322
N-L (lines): p 325
S-H (poly): p 331
W-A(poly): p 335

Foley at al.
C-S (lines): p 103
L-B (lines): p 107
N-L (lines): N.A.
S-H (poly): p 112
W-A(poly): N.A.

Clipping lines

Cohen-Sutherland clipping (lines)

• Clip line against convex region.
• For each edge of the region, clip line against that edge:
 - line all on wrong side of any edge? throw it away (trivial reject--e.g. red line with respect to bottom edge)
 - line all on correct side of all edges? doesn’t need clipping (trivial accept--e.g. green line).
 - line crosses edge? replace endpoint on wrong side with crossing point (clip)
Cohen Sutherland - details

- Only need to clip line against edges where one endpoint is inside and one is outside.
- The state of the outside endpoint (e.g., in or out, w.r.t a given edge) changes due to clipping as we proceed—need to track this.
- Use “outcode” to record endpoint in/out wrt each edge. One bit per clipping edge, 1 if out, 0 if in.

Outcode example

- Trivial reject condition?
- Trivial accept condition?
- Clipping line against vertical/horizontal edge is easy:
 - line has endpoints \((x_1, y_1)\) and \((x_2, y_2)\)
 - e.g. (vertical case) clip against \(x=a\) gives the point?
 - new point replaces the point for which outcode() is true
- Algorithm is valid for any convex clipping region (intersections are slightly more difficult)
Cohen Sutherland - Algorithm

- Compute outcodes for endpoints
- While not trivial accept and not trivial reject:
 - clip against a problem edge (i.e. one for which an outcode bit is 1)
 - compute outcodes again
- Return appropriate data structure

Cyrus-Beck/Liang-Barsky clipping

- Consider the parameter values, t, for each clip edge
- Only t inside $(0,1)$ is relevant
- Assumptions
 - $X_1 \neq X_2$
 - Ignore case where line is parallel to a clip edge (has no effect, but would lead to divide by zero).
 - We have a normal, n, for each clip edge pointing outward
 - For axis aligned rectangle (the usual case) these are?

Cyrus-Beck/Liang-Barsky clipping

- Parametric clipping:
 consider line in parametric form and reason about the parameter values
- More efficient, as we don’t compute the coordinate values at irrelevant vertices

Line is:

$$
\begin{align*}
\begin{bmatrix} x \\ y \end{bmatrix} &= \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + t \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} \\
\Delta x &= x_2 - x_1 \\
\Delta y &= y_2 - y_1
\end{align*}
$$

Computing t for intersection point

Think of X moving along the line shown. What is the condition that it is on the other line as well (i.e., intersects?)

Simplest to work from condition $(X(t) - P_e) \cdot n = 0$
Computing t for intersection point

Set
\[D = X_2 - X_1 \]
Then
\[X = X_1 + tD \]
And condition is
\[(P_e - (X_1 + tD)) \cdot n = 0 \]

Computing t for intersection point, X

Condition
\[(P_e - (X_1 + tD)) \cdot n = 0 \]
Rearrange
\[(P_e - X_1) \cdot n = tD \cdot n \]
And solve
\[t = \frac{(P_e - X_1) \cdot n}{D \cdot n} \]

- All four special cases can be expressed by:
 \[t = \frac{q_k}{p_k} \]
- Where
 \[p_1 = -\Delta x \quad q_1 = x_1 - x_{\text{min}} \]
 \[p_2 = \Delta x \quad q_2 = x_{\text{max}} - x_1 \]
 \[p_3 = -\Delta y \quad q_3 = y_1 - y_{\text{min}} \]
 \[p_4 = \Delta y \quad q_4 = y_{\text{max}} - y_1 \]
- Faster derivation for this special case?

From previous slide
\[t = \frac{(P_e - X_1) \cdot n}{D \cdot n} \]
This simplifies greatly for axis-aligned rectangles

Consider left edge. Now $n=$? and $P_e=$?

And $t =$?
• All four cases can be expressed by:

\[t = \frac{q_k}{p_k} \]

• Where

\[p_1 = -\Delta x \quad q_1 = x_1 - x_{\min} \]
\[p_2 = \Delta x \quad q_2 = x_{\max} - x_1 \]
\[p_3 = -\Delta y \quad q_3 = y_1 - y_{\min} \]
\[p_4 = \Delta y \quad q_4 = y_{\max} - y_1 \]

• One can also get this special case directly by solving:

\[x_{\min} \leq x_1 + t\Delta x \leq x_{\max} \]
\[y_{\min} \leq y_1 + t\Delta y \leq y_{\max} \]

Cyrus-Beck/Liang-Barsky (cont)

• Next step: Use the \(t \)'s to determine the clip points

• Recall that only \(t \) in (0,1) is relevant, but we need additional logic to determine clip endpoints from multiple \(t \)'s inside (0,1).

• We imagine going from \(X_1 \) to \(X_2 \) and classify intersections as either potentially entering (PE) or potentially leaving (PL) if they go across a clip edge from outside in or inside out.

• This is easily determined from the sign of \(D \cdot n \) which we have already computed.

![PE vs PL example](image)

Cyrus-Beck/Liang-Barsky--Algorithm

• Compute incoming (PE) \(t \) values, which are \(q_k/p_k \) for each \(p_k<0 \)

• Compute outgoing (PL) \(t \) values, which are \(q_k/p_k \) for each \(p_k>0 \)

• Parameter value for small \(t \) end of the segment is:

\[t_{\text{small}} = \max(0, \text{incoming values}) \]

• Parameter value for large \(t \) end of the segment is:

\[t_{\text{large}} = \min(1, \text{outgoing values}) \]

• If \(t_{\text{small}} \leq t_{\text{large}} \), there is a segment portion in the clip window - compute endpoints by substituting these two \(t \) values (how)?

• Otherwise reject because it is outside.
Cyrus-Beck/Liang-Barsky--Notes

- Works fine if clipping window is not an axis-aligned rectangle. Computing the t values is just more expensive.
- **Bibliographic note**: Original algorithm was Cyrus-Beck (close to what we have done here). A very similar algorithm was independently developed later by Liang-Barsky with some additional improvements for identifying early rejects as the t values are computed.

Nicholl-Lee-Nicholl clipping

- Fast specialized method
- We will just outline the basic idea
 - Consider segment with endpoints: a, b
 - Cases:
 - a inside
 - a in edge region
 - a in corner region
 - For each case, we generate specialized test regions for b
 - Which region b is in is determined by simple "which-side" tests.
 - The region b is in determines which edges need to be clipped against.
 - Speed is enhanced by good ordering of tests, and caching intermediate results

NLN clipping: Compute the area that b is in, and clip the segment ab against the edges specified.

Polygon clip (against convex polygon)
Sutherland-Hodgeman polygon clip

- Recall: polygon is convex if any line joining two points inside the polygon, also lies inside the polygon; implies that a point is inside if it is on the right side of each edge.

- Clipping each edge of a given polygon doesn’t make sense - how do we reassemble the pieces? We want to arrange doing so on the fly.

- Clipping the polygon against each edge of the clip window in sequence works if the clip window is convex.

- (Note similarity to Sutherland-Cohen line clipping)
Sutherland-Hodgeman polygon clip

Then the next

And finally, the last one.

Clipping against current clip edge

- Polygon is a list of vertices
- Think of process as rewriting polygon, vertex by vertex
- Check start vertex
 - in - emit it
 - out - ignore it
- Walk along vertices and for each edge consider four cases and apply corresponding action.

Four cases:
- polygon edge crosses clip edge going from out to in
- polygon edge crosses clip edge going from in to out
- polygon edge goes from out to out
- polygon edge goes from in to in
Start vertex

- Polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
- Polygon edge crosses clip edge going from in to out ==> emit crossing
- Polygon edge goes from out to out ==> emit nothing
- Polygon edge goes from in to in ==> emit next vertex

Now have

- Polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
- Polygon edge crosses clip edge going from in to out ==> emit crossing
- Polygon edge goes from out to out ==> emit nothing
- Polygon edge goes from in to in ==> emit next vertex

Start vertex

- Polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
- Polygon edge crosses clip edge going from in to out ==> emit crossing
- Polygon edge goes from out to out ==> emit nothing
- Polygon edge goes from in to in ==> emit next vertex

Now have

- Polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
- Polygon edge crosses clip edge going from in to out ==> emit crossing
- Polygon edge goes from out to out ==> emit nothing
- Polygon edge goes from in to in ==> emit next vertex

New start vertex

- Polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
- Polygon edge crosses clip edge going from in to out ==> emit crossing
- Polygon edge goes from out to out ==> emit nothing
- Polygon edge goes from in to in ==> emit next vertex

Clip against next edge

- Polygon edge crosses clip edge going from out to in ==> emit crossing, next vertex
- Polygon edge crosses clip edge going from in to out ==> emit crossing
- Polygon edge goes from out to out ==> emit nothing
- Polygon edge goes from in to in ==> emit next vertex
Now have

Clipping against final (bottom) edge gives

More Polygon clipping

- Notice that we can have a pipeline of clipping processes, one against each edge, each operating on the output of the previous clipper -- substantial advantage.
- Unpleasantness can result from concave polygons; in particular, polygons with empty interior.
- Can modify algorithm for concave polygons (e.g. Weiler Atherton)
For clockwise polygon (starting outside):

- For out-to-in pair, follow usual rule
- For in-to-out pair, follow clip edge (clockwise) and then jump to next vertex (which is on the outside) and start again
- Only get a second piece if polygon is convex

Additional remarks on clipping

- Although everything discussed so far has been in terms of polygons/lines clipped against lines in 2D, all - except Nicholl-Lee-Nicholl - will work in 3D against convex regions without much change.
- This is because the central issue in each algorithm is the inside outside decision as a convex region is the intersection of half spaces.
- NLN could work in 3D, but the number of cases increases too much to be practical.

- Inside-outside decisions can be made for lines in 2D, planes in 3D. e.g testing $dx \cdot n \geq 0$
- Hence, all (except N-L-N) can be used to clip:
 - Lines against 3D convex regions (e.g. cubes)
 - Polygons against 3D convex regions (e.g. cubes)