The next span - 2

- Horizontal edges are irrelevant (typically would be pruned at the outset)
- Edge becomes relevant when \(y \geq y_{min} \) of edge (note appeal to convention)*
- Edge becomes irrelevant - when \(y \geq y_{max} \) of edge (note appeal to convention)*

Filling in details -- 1

- For each edge store: x-value, maximum y value of edge, 1/m
 - x-value starts out as x value for \(y_{min} \)
 - m is never 0 because we ignore horizontal ones
- Keep edges in a table, indexed by minimum y value (Edge Table==ET)
- Maintain a list of active edges (Active Edge List==AEL).

Filling in details -- 2

- For row = min to row=max
 - AEL=append(AEL, ET(row)); (add edges starting at the current row)
 - remove edges whose ymax=row
 - OK since we are assuming integral coordinates; otherwise one would use ceil(ymax)
 - sort AEL by x-value
 - fill spans
 - use parity rule
 - remember convention for integral \(x_{min} \) and \(x_{max} \)
 - integral top/bottom vertices have double entries
 - update each edge in AEL
 - \(x += (1/m) \)
Compute the edge table (ET) to begin. Then fill polygon and update active edge list (AEL) row by row.

Format of edge entries

<table>
<thead>
<tr>
<th>x</th>
<th>1/m</th>
<th>ymax</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

(This is all there is in the ET—why?)

AEL just before filling

<table>
<thead>
<tr>
<th>Row=5</th>
<th>Row=4</th>
<th>Row=3</th>
<th>Row=2</th>
<th>Row=1</th>
<th>Row=0</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 0 5</td>
<td>5 0 5</td>
<td>3 0 5</td>
<td>5 0 5</td>
<td>1 0 3</td>
<td>5 0 5</td>
</tr>
<tr>
<td>1 0 3</td>
<td>5 0 5</td>
<td>1 0 3</td>
<td>5 0 5</td>
<td>1 0 3</td>
<td>5 0 5</td>
</tr>
</tbody>
</table>
Comments

- Sort is quite fast, because AEL is usually almost in order.
- Nonetheless, OpenGL limits to convex polygons, so exactly two elements in AEL at any time, and no sorting.
- With additional logic to keep track of what color to use, can fill in many polygons at a time.
- Can be done without division/floating point.

Dodging division and floating point

- \(1/m = \frac{Dx}{Dy} \), which is a rational number.
- \(x = x_{\text{int}} + x_{\text{num}}/Dy \)
- store \(x \) as \((x_{\text{int}}, x_{\text{num}}) \).
- then \(x \rightarrow x+1/m \) is given by:
 - \(x_{\text{num}} = x_{\text{num}} + Dx \)
 - if \(x_{\text{num}} \geq x_{\text{denom}} \)
 - \(x_{\text{int}} = x_{\text{int}} + 1 \)
 - \(x_{\text{num}} = x_{\text{num}} - x_{\text{denom}} \)
- Advantages:
 - no division/floating point
 - can tell if \(x \) is an integer or not (check \(x_{\text{num}}=0 \)), and get \(\text{truncate}(x) \) easily, for the span endpoints.

Aliasing/Anti-Aliasing

- Analogous to lines
- Anti-aliasing is done using graduated gray levels computed by smoothing and sampling
- Problem with “slivers” is really an sampling problem and is handled by filtering and sampling.

Boundary fill

- Basic idea: fill in pixels inside a boundary
- Recursive formulation:
 - to fill starting from an inside point
 - if point has not been filled,
 - fill
 - call recursively with all neighbours that are not boundary pixels

Aliasing

Ideal
Choice of neighbours is important

4-connected 4 connected fill of a four connected boundary doesn’t work

8 connected

Clipping

- 2D elements are laid out in a convenient (often user based) coordinate system and then transformed to a frame buffer coordinate system.
- Objects that are to be drawn must lie inside frame buffer, and may have to lie inside particular region - e.g. viewport.
- We want to dodge additional expensive operations on objects or parts of objects that won’t be displayed.
- How do we ensure that the line/polygon lies inside a region?
- (Answer) Cut them up!

Pattern fill

- Use coordinates as index into pattern

Clipping in the 2D pipeline

Clipping references

Hearn and Baker
- C-S (lines): p 317
- L-B (lines): p 322
- N-L (lines): p 325
- S-H (poly): p 331
- W-A(poly): p 335

Foley at al.
- C-S (lines): p 103
- L-B (lines): p 107
- N-L (lines): N.A.
- S-H (poly): p 112
- W-A(poly): N.A.
Clipping lines

Have

Need

Cohen-Sutherland clipping (lines)

- Clip line against convex region.
- For each edge of the region, clip line against that edge:
 - line all on wrong side of any edge? throw it away (trivial reject—e.g., red line with respect to bottom edge)
 - line all on correct side of all edges? doesn’t need clipping (trivial accept—e.g., green line).
 - line crosses edge? replace endpoint on wrong side with crossing point (clip)

Cohen Sutherland - details

- Only need to clip line against edges where one endpoint is inside and one is outside.
- The state of the outside endpoint (e.g., in or out, w.r.t. a given edge) changes due to clipping as we proceed—need to track this.
- Use “outcode” to record endpoint in/out wrt each edge. One bit per clipping edge, 1 if out, 0 if in.
Outcode example

Outcode for P1?

Outcode for P2?

Outcode example

Outcode for P1?

Outcode for P2?

Note: As we process the four edges, the outcodes change

Cohen Sutherland - details

• Trivial reject
 – outcode(p1) & outcode(p2) != 0
• Trivial accept:
 – outcode(p1) | outcode(p2) == 0
• Clipping line against vertical/horizontal edge is easy:
 – line has endpoints \((x_s, y_s)\) and \((x_e, y_e)\)
 – e.g. (vertical case) clip against \(x=a\) gives the point
 \[(a, y_s + (a - x_s)((y_e - y_s)/(x_e - x_s))) \]
 – new point replaces the point for which outcode() is true
• Algorithm is valid for any convex clipping region (intersections are slightly more difficult)

Cohen Sutherland - Algorithm

• Compute outcodes for endpoints
• While not trivial accept and not trivial reject:
 – clip against a problem edge (i.e. one for which an outcode bit is 1)
 – compute outcodes again
• Return appropriate data structure