Cyrus-Beck/Liang-Barsky clipping

- Parametric clipping: consider line in parametric form and reason about the parameter values
- More efficient, as we don’t compute the coordinate values at irrelevant vertices

Line is:
\[
\begin{align*}
 x &= x_1 + t \Delta x \\
 y &= y_1 + t \Delta y
\end{align*}
\]

\[\Delta x = x_2 - x_1\]
\[\Delta y = y_2 - y_1\]

Segment restricts \(t \) to be inside \([0,1]\)

Computing \(t \) for intersection point

Think of \(X \) moving along the line shown. What is the condition that it is on the other line as well (i.e., intersects?)

Simplest to work from condition
\[
(P_e - X(t)) \cdot n = 0
\]

Set
\[
D = X_2 - X_1
\]

Then
\[
X(t) = X_1 + tD
\]

And condition is
\[
(P_e - (X_1 + tD)) \cdot n = 0
\]
Computing t for intersection point

Condition

$$(P_e - (X_1 + tD)) \cdot n = 0$$

Rearrange

$$(P_e - X_1) \cdot n = d \cdot n$$

And solve

$$t = \frac{(P_e - X_1) \cdot n}{D \cdot n}$$

Computing t for intersection point

From previous slide

$$t = \frac{(P_e - X_1) \cdot n}{D \cdot n}$$

This simplifies greatly for axis aligned rectangles

Consider left edge. Now $n=\vec{-1}$ and $P_e=\vec{x_{min}}$

And $t = ?$

Computing t for intersection point

All four special cases can be expressed by:

$$t = \frac{q_k}{p_k}$$

Where

- $p_1 = -\Delta x, q_1 = x_1 - x_{min}$
- $p_2 = \Delta x, q_2 = x_{max} - x_1$
- $p_3 = -\Delta y, q_3 = y_1 - y_{min}$
- $p_4 = \Delta y, q_4 = y_{max} - y_1$

One can also get this special case **directly** by solving:

$$x_{min} \leq x_1 + t\Delta x \leq x_{max}$$

$$y_{min} \leq y_1 + t\Delta y \leq y_{max}$$
Cyrus-Beck/Liang-Barsky (cont)

- Next step: Use the t’s to determine the clip points
- Recall that only t in $\langle 0,1 \rangle$ is relevant, but we need additional logic to determine clip endpoints from multiple t’s inside $\langle 0,1 \rangle$.
- We imagine going from X_1 to X_2 and classify intersections as either potentially entering (PE) or potentially leaving (PL) if they go across a clip edge from outside in or inside out.
- This is easily determined from the sign of $D\cdot n$ which we have already computed.

\[D = X_2 - X_1 \]

Cyrus-Beck/Liang-Barsky--Algorithm

- Compute incoming (PE) t values, which are q_k/p_k for each $p_k<0$
- Compute outgoing (PL) t values, which are q_k/p_k for each $p_k>0$
- Parameter value for small t end of the segment is:
 \[t_{small} = \max(0, \text{incoming values}) \]
- Parameter value for large t end of the segment is:
 \[t_{large} = \min(1, \text{outgoing values}) \]
- If $t_{small} > t_{large}$, there is a segment portion in the clip window - compute endpoints by substituting these two t values (how)?
- Otherwise reject because it is outside.

Cyrus-Beck/Liang-Barsky--Notes

- Works fine if clipping window is not an axis-aligned rectangle. Computing the t values is just more expensive.
- **Bibliographic note:** Original algorithm was Cyrus-Beck (close to what we have done here). A very similar algorithm was independently developed later by Liang-Barsky with some additional improvements for identifying early rejects as the t values are computed.
Nicholl-Lee-Nicholl clipping

- Fast specialized method
- We will just outline the basic idea
- Consider segment with endpoints: a, b
- Cases:
 - a inside
 - a in edge region
 - a in corner region
- For each case, we generate specialized test regions for b
- Which region b is in is determined by simple “which-side” tests.
- The region b is in determines which edges need to be clipped against.
- Speed is enhanced by good ordering of tests, and caching intermediate results

Polygon clip (against convex polygon)

Sutherland-Hodgeman polygon clip

- Recall: polygon is convex if any line joining two points inside the polygon, also lies inside the polygon; implies that a point is inside if it is on the right side of each edge.
- Clipping each edge of a given polygon doesn’t make sense - how do we reassemble the pieces? We want to arrange doing so on the fly.
- Clipping the polygon against each edge of the clip window in sequence works if the clip window is convex.
- (Note similarity to Sutherland-Cohen line clipping)
Sutherland-Hodgeman polygon clip

Clip window
Polygon to clip

Clip entire polygon against one edge

Then clip it against the next

Then the next
Sutherland-Hodgeman polygon clip

Polygon to clip

Clip window

1

2

3

4

And finally, the last one.

Clipping against current clip edge

- Polygon is a list of vertices
- Think of process as rewriting polygon, vertex by vertex
- Check start vertex
 - in - emit it
 - out - ignore it
- Walk along vertices and for each edge consider four cases and apply corresponding action.

- Four cases:
 - polygon edge crosses clip edge going from out to in
 - emit crossing, next vertex
 - polygon edge crosses clip edge going from in to out
 - emit crossing
 - polygon edge goes from out to out
 - emit nothing
 - polygon edge goes from in to in
 - emit next vertex

Start vertex

class edge crossing

class edge crossing

implies

emit crossing, next vertex

emit crossing

emit nothing

emit next vertex
Start vertex

- Polygon edge crosses clip edge going from out to in: emit crossing, next vertex
- Polygon edge crosses clip edge going from in to out: emit crossing
- Polygon edge goes from out to out: emit nothing
- Polygon edge goes from in to in: emit next vertex

Now have

- Polygon edge crosses clip edge going from out to in: emit crossing, next vertex
- Polygon edge crosses clip edge going from in to out: emit crossing
- Polygon edge goes from out to out: emit nothing
- Polygon edge goes from in to in: emit next vertex

New start vertex

Clip against next edge

- Polygon edge crosses clip edge going from out to in: emit crossing, next vertex
- Polygon edge crosses clip edge going from in to out: emit crossing
- Polygon edge goes from out to out: emit nothing
- Polygon edge goes from in to in: emit next vertex

Now have

- Polygon edge crosses clip edge going from out to in: emit crossing, next vertex
- Polygon edge crosses clip edge going from in to out: emit crossing
- Polygon edge goes from out to out: emit nothing
- Polygon edge goes from in to in: emit next vertex
More Polygon clipping

- Notice that we can have a pipeline of clipping processes, one against each edge, each operating on the output of the previous clipper -> substantial advantage.
- Unpleasantness can result from concave polygons; in particular, polygons with empty interior.
- Can modify algorithm for concave polygons (e.g. Weiler Atherton)

Weiler Atherton

For clockwise polygon (starting outside):
- For out-to-in pair, follow usual rule
- For in-to-out pair, follow clip edge (clockwise) and then jump to next vertex (which is on the outside) and start again
- Only get a second piece if polygon is convex
Additional remarks on clipping

- Although everything discussed so far has been in terms of polygons/lines clipped against lines in 2D, all - except Nicholl-Lee-Nicholl - will work in 3D against convex regions without much change.
- This is because the central issue in each algorithm is the inside outside decision as a convex region is the intersection of half spaces.
- Inside-outside decisions can be made for lines in 2D, planes in 3D. e.g testing \(d \cdot n > 0 \)
- Hence, all (except N-L-N) can be used to clip:
 - Lines against 3D convex regions (e.g. cubes)
 - Polygons against 3D convex regions (e.g. cubes)
- N-L-N could work in 3D, but the number of cases increases too much to be practical.