

Details Optional

Plan B: Solve for the affine transformation directly.

- We know that this is an "affine" transform.
- In particular, the matrix we seek is:

$$\begin{pmatrix}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{pmatrix}$$

More Details

Details Optional

- Consider the first mapping, Mp₁=q₁
- $p_1 = (x_1, y_1, 1)^T$, $q_1 = (u_1, v_1, 1)^T$

$$\begin{pmatrix} u_1 \\ v_1 \\ 1 \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \\ 1 \end{pmatrix}$$

$$ax_1 + by_1 + c = u_1$$
$$dx_1 + ey_1 + f = v_1$$

More Details

Details Optional

Write

$$ax_1 + by_1 + c = u_1$$

As

$$x_1a + y_1b + 1 \bullet c + 0 \bullet d + 0 \bullet e + 0 \bullet f = u_1$$

Notice that this gives one equation in the six unknowns

More Details

Details Optional

Similarly, write

$$dx_1 + ey_1 + f = v_1$$

As

$$0 \bullet a + 0 \bullet b + 0 \bullet c + x_1 \bullet d + y_1 \bullet e + 1 \bullet f = u_1$$

Notice that this gives a second equation in the six unknowns

More Details

Details Optional

- Mp₁=q₁ gives first two rows
- $p_1 = (x_1, y_1, 1)^T$, $q_1 = (u_1, v_1, 1)^T$

$$\begin{pmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \\ 1 \end{pmatrix} = \begin{pmatrix} u_1 \\ v_1 \\ 1 \end{pmatrix}$$

$$ax_1 + by_1 + c = u_1$$
$$dx_1 + ey_1 + f = v_1$$

	(x_1)	y_1	1	0	0	0γ	a	(u_1)
*	0	O	0	0 x ₁	<i>y</i> ₁	1	$b \mid$	$ v_1 $
	x2	y_2	1	0 x ₂	0	0	$c \mid$	u_2
	0	0	0	x_2	y_2	1	d	$=$ v_2
	x_3	y_3	1	0	0	0	e	u_3
	(0	0	0	x_3	y_3	1人	f	(v_3)

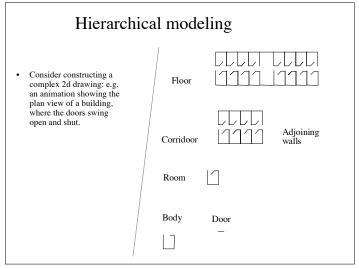
Mp₂=q₂, Mp₃=q₃ give other rows

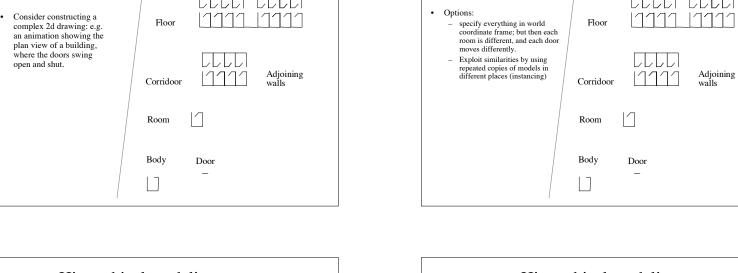
More Details

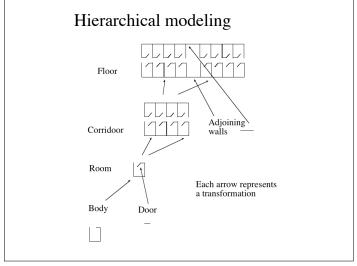
Details Optional

Final representation of six equations in six unknowns
$$\begin{pmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_1 & y_1 & 1 & b \\ x_2 & y_2 & 1 & 0 & 0 & 0 & c \\ 0 & 0 & 0 & x_2 & y_2 & 1 & d \\ x_3 & y_3 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_3 & y_3 & 1 \end{pmatrix} \begin{pmatrix} u_1 \\ v_1 \\ v_2 \\ u \\ u_3 \\ v_3 \end{pmatrix}$$

This can be solved using standard methods







Hierarchical modeling

- Model form
 - Directed acyclic graph.
 - Each node consists of 0 or more objects (lines, polygons, etc).

Hierarchical modeling

- Each edge is a transformation
- There can be many edges joining two nodes (e.g. in the case of the corridor - many copies of the same room model, each transformed differently).
- Every graphics API supports hierarchies some directly (meaning you have to learn a language to express the model) some indirectly with a matrix stack

Hierarchical modeling

Write the transformation from door coordinates to room coordinates as:

 T_{room}^{door}

Then to render a door, use the transformation:

 $T_{device}^{world} T_{floor}^{corridoor} T_{corridoor}^{room} T_{room}^{door}$

To render a body, use the transformation:

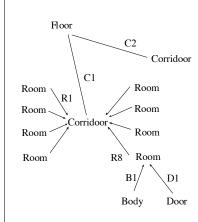
 $T_{device}^{world}T_{floor}^{corridoor}T_{corridoor}^{room}T_{room}^{body}$

Matrix stacks and rendering

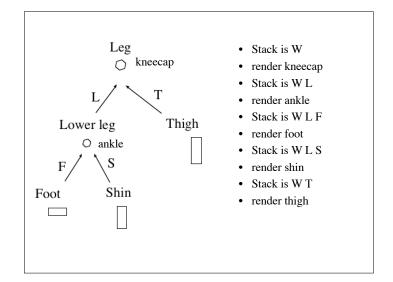
- Root node has single edge with the world-to-device transformation.
- Algorithm for rendering a hierarchical model:
 - render (root)
- Recursive definition of render (node)
 - if node has object, render it
 - for each child:
 - · push transformation
 - render (child)
 - · pop transformation

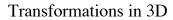
Matrix stacks and rendering

- Matrix stack:
 - Stack of matrices used for rendering
 - Applied in sequence.
 - Pop=remove last matrix
 - Push=append a new matrix
 - In previous example, body-device transformation comes from door-device transformation by popping door-room and pushing body-room

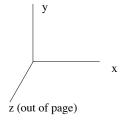


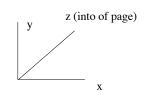
- Now to render door on first room in first corridor, stack looks like: W C1 R1 D1
- For efficiency we would store "running" products, IE, the stack contains: W, W*C1, W*C1*R1, W*C1*R1*D1.
- We do not need two copies of corridor, or 16 copies of body; we render one copy using 16 different transformations. This is known as instancing
- Animation requires care: if D1
 is a single function of time, all
 doors will swing open and
 closed at the same time.





- Right hand coordinate system (conventional, i.e., in math)
- In graphics a LHS is sometimes also convenient (Easy to switch between them--later).





Transformations in 3D

- Homogeneous coordinates now have four components traditionally, $(x,\,y,\,z,\,w)$
 - ordinary to homogeneous: $(x, y, z) \rightarrow (x, y, z, 1)$
 - homogeneous to ordinary: $(x, y, z, w) \rightarrow (x/w, y/w, z/w)$
- Again, translation can be expressed as a multiplication.

Transformations in 3D

• Translation:

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & tx \\ 0 & 1 & 0 & ty \\ 0 & 0 & 1 & tz \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

3D transformations

- Anisotropic scaling:
- Shear (one example):

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} sx & 0 & 0 & 0 \\ 0 & sy & 0 & 0 \\ 0 & 0 & sz & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & a & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & a & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Rotations in 3D

About x-axis

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotations in 3D

- 3 degrees of freedom
- Orthogonal, with det(R)=1
- We can easily determine formulas for rotations about each of the axes
- For general rotations, there are many possible representations—we will use a **sequence** of rotations about coordinate axes.
- Sign of rotation follows the Right Hand Rule--point thumb along axis in direction of increasing ordinate--then fingers curl in the direction of positive rotation).

Rotations in 3D

About y-axis

$$M = \begin{pmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Rotations in 3D

About z-axis

$$\mathbf{M} = \begin{pmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Rotations in 3D

Commuting transformations

- If A and B are matrices, does AB=BA? Always? Ever?
- What if A and B are restricted to particular transformations?
- What about the 2D transformations that we have studied?
- How about if A and B are restricted to be on of the three specific 3D rotations just introduced, such as rotation about the Z axis?

Answer: In general AB != BA (matrix multiplication is not commutative). But if A and B are either translations or scalings, then multiplication is commutative. The same applies to rotations restricted to be about one of the 3 axis in 3D.

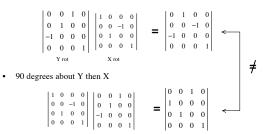
Rotations in 3D

• About Y axis
$$\begin{array}{c|cccc} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{array}$$

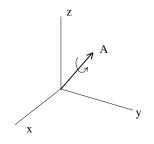
• 90 degrees about Y axis
$$\begin{vmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

Rotations in 3D

• 90 degrees about X then Y

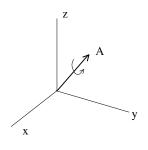


Rotation about an arbitrary axis



Strategy--rotate A to Z axis, rotate about Z axis, rotate Z back to A.

Rotation about an arbitrary axis

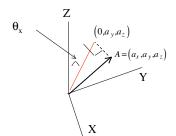


Tricky part: rotate A to Z axis

Two steps.

- 1) Rotate about x to xz plane
- 2) Rotate about y to Z axis.

Rotation about an arbitrary axis



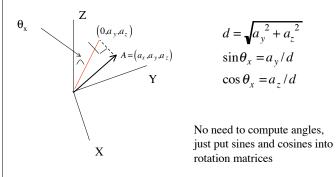
Tricky part: rotate A to Z axis

Two steps.

- 1) Rotate about X to xz plane
- 2) Rotate about Y to Z axis.

As A rotates into the xz plane, its projection (shadow) onto the YZ plane (red line) rotates through the same angle which is easily calculated.

Rotation about an arbitrary axis

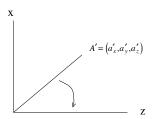


Rotation about an arbitrary axis

Final form is

$$R_x(-\theta_x)R_y(-\theta_y)R_z(\theta_z)R_y(\theta_y)R_x(\theta_x)$$

Rotation about an arbitrary axis



Apply $R_x(\theta_x)$ to A to get A'

 $R_{\nu}(\theta_{\nu})$ should be easy, but note that it is clockwise.

Transforming the Normal Vector

- The normal to a polygon does **not** always transform in the same way as the points on the polygon
 - One case where is does: Orthogonal

Somewhat intuitive

- One case where it does not: Shear

$$M = \begin{vmatrix} 1 & a \\ 0 & 1 \end{vmatrix} \longrightarrow \longrightarrow$$

Transforming the Normal Vector

- One way to find the transformed normal is to first transform the polygon, and then re-compute the normal.
- We can often save some time by computing the transform of the normal.