Further comments on the canonical frustum

 $u_{min},\,u_{max},\,v_{min},\,v_{max}$, are thought of as being in the camera coordinate system ==> units are that of world coordinate system

For assignment three, you need to choose $u_{\min},\,u_{\max},\,v_{\min},\,v_{\max},$ and f.

I suggest simply setting u_{min} , u_{max} , v_{min} , v_{max} , to reflect your understanding of your screen window in world coordinates, and set f accordingly. (Best to keep the aspect ratio the same).

Determining the screen coordinates

Once you have (x,y) you need to map them back to the screen coordinates.

Use primes (') for mapped quantities (including projection) and carets (^) for screen quantities.

The canonical frustum gives the screen as a square that is 2f' by 2f'. Note that f' is between 0 and 1 (why?)

Our window on the screen has corners: $(\hat{u}_{\min}, \hat{u}_{\max})$ and $(\hat{v}_{\min}, \hat{v}_{\max})$ (Unless we want to distort things we assume the same aspect ratio as the camera window.)

Note the approximate reciprocal relation of $u_{\text{min}},\,u_{\text{max}}$ and $v_{\text{min}},\,v_{\text{max}},$ with f.

 f_1 and w_1 give the same image as f_2 and w_2 , but to see this in the math note that the camera center has shifted.

Because of this shift, the clipping plane values change, but $f_1-B_1 == f_2-B_2$

Determining the screen coordinates

Our screen coordinates are then:

$$\begin{split} \hat{x} &= \left(\frac{\hat{u}_{\max} + \hat{u}_{\min}}{2}\right) + \left(\frac{x'}{2f'}\right) \bullet \left(\hat{u}_{\max} - \hat{u}_{\min}\right) \\ \hat{y} &= \left(\frac{\hat{v}_{\max} + \hat{v}_{\min}}{2}\right) + \left(\frac{y'}{2f'}\right) \bullet \left(\hat{v}_{\max} - \hat{v}_{\min}\right) \end{split}$$

Or, equivalently:

$$\begin{split} \hat{x} &= \hat{u}_{\min} + \left(\frac{x' + f'}{2f'}\right) \bullet \left(\hat{u}_{\max} - \hat{u}_{\min}\right) \\ \hat{y} &= \hat{v}_{\min} + \left(\frac{y' + f'}{2f'}\right) \bullet \left(\hat{v}_{\max} - \hat{v}_{\min}\right) \end{split}$$

Plan A: Clipping against the canonical frustum

2D algorithms are easily extended. For line clipping with Cohen Sutherland we use the following 6 out codes:

y>-z y-z xz
$$_{min}$$
 (z_{min} = (f-F)/(B-f))

Recall C.S for segments

Compute out codes for endpoints

While not trivial accept and not trivial reject:

Clip against a problem edge (one point in, one out) Compute out codes again

Return appropriate data structure

Clipping against the canonical frustum

Clipping polygons in 3D against canonical frustum planes is simpler and more efficient than the general case.

Recall the S.H. gives four cases:

Polygon edge crosses clip plane going from out to in

· emit crossing, next vertex

Polygon edge crosses clip plane going from in to out

· emit crossing

Polygon edge goes from out to out

· emit nothing

Polygon edge goes from in to in

· emit next vertex

(The above is from before, just change "edge" to "plane")

Plan B: Clipping in homogenous coords

 For any camera, can turn the view frustrum into a regular parallelepiped (box). We will use the box bounded by x = ±1, y = ± 1, z = -1, and z = 0.

- Advantages
 - Simplified clipping in homogenous coordinates
 - Extends to cases where we use homogenous coordinates to represent additional information (and w could be negative).
 - Can simplify visibility algorithms.
- Approach: clever use of homogenous coordinates

In h.c., x => x y => y $z => (z - z_{min}) / (1 + z_{min})$ 1 => -zSo, the matrix is $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{1+z_{min}} & \frac{-z_{min}}{1+z_{min}} \\ 0 & 0 & -1 & 0 \end{pmatrix}$

Mapping to standard view volume (additional comments)

- The mapping from [z_{min}, -1] to [0,-1] is non-linear. (Of course, there exists a linear mapping, but not if we want everything else to work out nicely in h.c.).
- So a change in depth of \triangle D at the near plane maps to a larger depth difference in screen coordinates than the same \triangle D at the far plane.

Mapping to standard view volume (additional comments)

- But depth order is preserved (important!); the function is monotonic (proof?).
- And lines are still lines (proof?) and planes are still planes (important!).

Clipping in homogeneous coordinates

- We have a cube in (x,y,z), but it is **not** a cube in homogeneous coordinates, so we must divide if we want to take advantage of this particularly nice clipping situation.
- However, dividing before clipping might be inefficient if many points are excluded, so we often clip in homogeneous coordinates.

Clipping in homogeneous coord.'s

- Write h.c.'s in caps, ordinary coords in lowercase.
- Consider case of clipping stuff where x>1, x<-1
- Rearrange clipping inequalities:

$$\left(\frac{X}{W} \right) > 1 \qquad \qquad X > W, \qquad \qquad X < W, \\ \left(\frac{X}{W} \right) < -1 \qquad \qquad becomes \qquad X < -W, \qquad AND \qquad X > -W, \\ W > 0 \qquad \qquad W < 0$$

(So far W has been positive, but negatives occur if we further overload the use of h.c.'s)

Clipping in homogeneous coord.'s

- If we know that W is positive (the case so far!), simply clip against region A
- If we are using the h.c. for additional deferred division, then W can be negative.
- If W is negative, then we use region B. The clipping can be done by negating the point, and clipping against A, due to the nature of A and B.
- Case where object has both positive and negative W is a little more complex.
- Notice that the actual clipping computations are not that different from the case in Plan A---no free lunch!