RANSAC and SIFT

- Powerful combination to find objects in images
- Exemplar image and image being studied typically have different camera angle or position.
- Recall that:
 - SIFT descriptors are relatively invariant to camera changes
 - SIFT matching leads to lots of “false” matches
- The main idea is that true matches should “agree”
- For planar objects, the definition of “agree” is quite simple
 - They link via a homography (covered soon)
Matching Slides to Presentation Videos

Slides

Keyframes
SIFT (Scale Invariant Feature Transformation) keypoints review

local feature descriptors
location, scale, orientation and a feature vector with 128 elements

![Image showing keypoints and their descriptors]

Only a quarter of keypoints shown!
Nearest neighbor ratio has many outliers
Planar Homography

Mappings of points on a plane in 3D satisfy a simple relation

\[
\lambda' \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}
\]

frame keypoints

slide keypoints

\[X' = H X \]
Derivation of Planar Homography

Consider a point on a plane given by

\[X = X_o + sX_1 + tX_2 \]

under the two projective transforms

\[P = [A \ b] \quad \text{and} \quad P' = [A' \ b'] \]

This leads to two image points, \(\lambda p \) and \(\lambda' p' \).
Derivation of Planar Homography

\[
\lambda \mathbf{p} = [A \ b] \begin{bmatrix} X_o + sX_1 + tX_2 \ \ 1 \end{bmatrix}
\]

\[
= [A \ b] \begin{bmatrix} X_1 & X_2 & X_o \ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \\ 1 \end{bmatrix}
\]

\[
= [AX_1 \ AX_2 \ AX_o + b] \begin{bmatrix} s \\ t \\ 1 \end{bmatrix}
\]

\[
= V \begin{bmatrix} s \\ t \\ 1 \end{bmatrix}
\]
Derivation of Planar Homography

Similarly, \[\lambda' p' = V' \begin{bmatrix} s \\ t \\ 1 \end{bmatrix} \]

and so \[\lambda' p' = V' V^{-1} \lambda p = H \lambda p \]
Constraining matches by homography

Fit homography with RANSAC

Only a quarter of matches shown!
RANSAC approach

Repeat many times

Randomly select enough matches to fit homography

Compute homography

Using that homography, measure error on best (say) 50%

Output best one found
Computing Homography

Seek H where

$$
\begin{bmatrix}
u' \\ v' \\ w'
\end{bmatrix} = H
\begin{bmatrix}
x \\ y \\ 1
\end{bmatrix}
X = \begin{bmatrix}
x \\ y \\ 1
\end{bmatrix}
$$

H is only determined up to a scale factor (eight unknowns).

Let the rows of H be h_1^T, h_2^T, h_3^T.

$$
x' = \frac{u'}{w'} \text{ so } x'w' = u'. \text{ Similarly, } y'w' = v'
$$

Also, $u' = h_1^T X$ and $v' = h_2^T X$ and $w' = h_3^T X$
Computing Homography

Each match then gives two linear equations

\[x' h_3^T X = h_1^T X \quad \text{and} \quad y' h_3^T X = h_2^T X \]

Hence four matches are OK.

This can be solved with homogenous least squares*, but this is a bit unstable. A better way is the DLT (direct linear transform) method.

* Doing this is part of the homework. You may want to review how we set up the equations for camera calibration. Notice that in the expressions above, \(X \) can be a row vector and the \(h_x \) column vectors. Referring to camera calibration, \(X \) is playing the role that \(P \) did, and \(h_x \) are playing the role of \(m_x \) (rows of \(M \)).