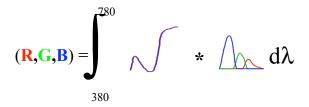
Image Formation (Spectral)



On the next page, (R,G,B) is the row vector, $\boldsymbol{\rho}$, with elements $\boldsymbol{\rho}^{(k)}$. So, $\mathbf{R} = \boldsymbol{\rho}^{(1)}$, $\mathbf{G} = \boldsymbol{\rho}^{(2)}$, $\mathbf{B} = \boldsymbol{\rho}^{(3)}$.

Important

Discrete Version

Often we represent functions by vectors. For example, a spectra might be represented by 101 samples in the range of 380 to 780 nm in steps of 4nm.

Then $L(\lambda)$ becomes the vector \mathbf{L} , $R^{(k)}(\lambda)$ becomes the vector $\mathbf{R}^{\mathbf{k}}$, and the response (ignoring non-linearity issues) is given by a dot product:

$$\boldsymbol{\rho}^{(k)} = \mathbf{L} \bullet \mathbf{R}^{(\mathbf{k})}$$

More formally,

The response of an image capture system to a light signal $L(\lambda)$ associated with a given pixels is modeled by

$$v^{(k)} = F^{(k)}(\rho^{(k)}) = F^{(k)}\left(\int L(\lambda)R^{(k)}(\lambda)d\lambda\right)$$

where $R^{(k)}(\lambda)$ is the sensor response function for the k^{th} channel and $\upsilon^{(k)}$ is the k^{th} channel response.

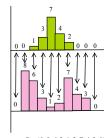
In this formulation, $R^{(k)}(\lambda)$ includes the contributions due to the aperture, focal length, sensor position in the focal plane.

 $F^{(k)}$ absorbs typical non-linearities such as gamma.

Important

Sensor/light interaction example

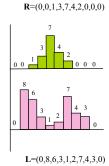
R=(0,0,1,3,7,4,2,0,0,0)

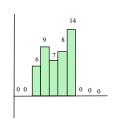


L=(0,8,6,3,1,2,7,4,3,0)

Multiply lined up pairs of numbers and then sum up Important

Sensor/light interaction example





L * R= (0*0, 0*8, 1*6, 3*3, 7*1, 4*2, 2*7, 0*4, 0*3, 0*0) =(0,0,6,9,7,8,14,0,0,0)

$$\mathbf{L} \bullet \mathbf{P} = 0 + 0 + 6 + 9 + 7 + 8 + 14$$
$$= 44$$

Image Formation (Spectral)

- Note that (ignoring $F^{(k)}$) image formation is linear.
- Formally this means if:

$$L_1(\lambda) -> \rho_1^{(k)}$$
 and $L_2(\lambda) -> \rho_2^{(k)}$

• Then:

9

Image Formation (Spectral)

- Note that (ignoring $F^{(k)}$) image formation is linear.
- Formally this means if:

$$L_1(\lambda) -> \rho_1^{(k)}$$
 and $L_2(\lambda) -> \rho_2^{(k)}$

• Then:

$$aL_{1}(\lambda) + bL_{2}(\lambda) -> a\rho_{1}^{(k)} + b\rho_{2}^{(k)}$$

Image Formation (Spectral)

- Note that image formation loses spectral information
- Technically, the process is a projection
- This means that two **very** different spectra can map into the same color
- This is the key to color reproduction

Supplemental material

Image Formation (Spectral)

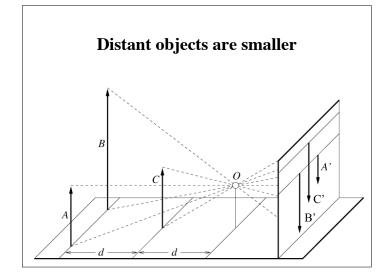
 $F^{(k)}$ is often ignored (assumed to be the identity), but this is not a safe assumption, especially when color or radiometric measurements matter. To compensate for the non-linearity of CRT display monitors, camera manufactures will "gamma" correct the signal, typically by raising the signal (normalized to [0,1]) to the power 1/(2.2).

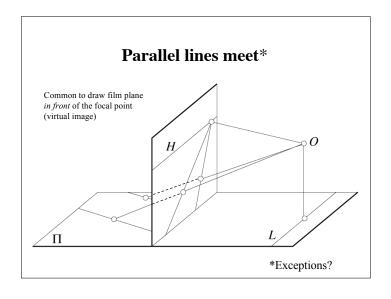
Note that in such an image, a number twice as large does not mean that the light had twice the power!

To linearize RGB's from such a signal we compute: $p=F^{-1}(v)=255*(v/255)^2.2$

Image Formation (Geometric)

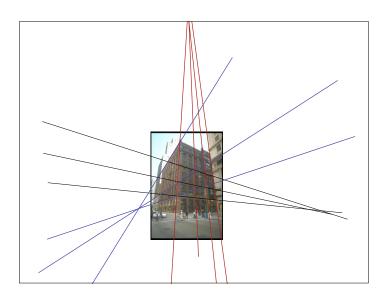
Pinhole cameras • Pinhole cameras work for deriving algorithms—a real camera needs a lens image plane pinhole pinhole virtual image

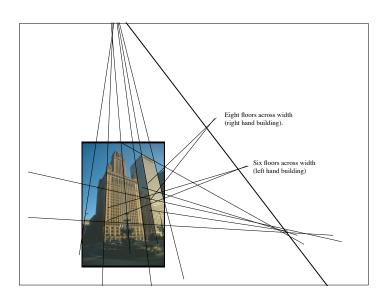




Vanishing points

- Each set of parallel lines (=direction) meets at a different point
 - The vanishing point for this direction
- Sets of parallel lines on the same plane lead to collinear vanishing points.
 - The line is called the *horizon* for that plane
 - Standard horizon is the horizon of the ground plane.
- One way to spot fake images
 - scale and perspective don't work
 - vanishing points behave badly





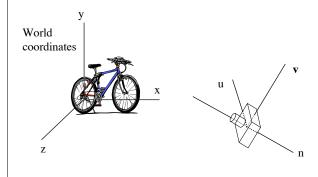
Geometric properties of projection

- Points go to points
- · Lines go to lines
- Polygons go to polygons
- Degenerate cases
 - line through focal point projects to a point
 - plane through focal point projects to a line

Geometric Camera Model

- Transform world coordinates to standard camera coordinates
 - (Extrinsic parameters)
- · Project onto standard camera plane
 - (3D becomes 2D)
- · Transform into pixel locations
 - (Intrinsic camera parameters)

World and camera coordinates



Math aside, #2

Representing Transformations

- Need mathematical representation for mapping points from the world to an image (and later, from an image taken by one camera to another).
- Represent linear transformations by matrices
- To transform a point, represented by a vector, multiply the vector by the appropriate matrix.
- To transform line segments, transform endpoints
- To transform polygons, transform vertices

2D Transformations

- Represent linear transformations by matrices
- To transform a point, represented by a vector, multiply the vector by the appropriate matrix.
- Recall the definition of matrix times vector:

$$\begin{pmatrix} a_{11}x + a_{12}y \\ a_{21}x + a_{22}y \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Supplemental material

Proof that matrix multiplication is linear

$$M(a\mathbf{x} + b\mathbf{y}) = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} ax_1 + by_1 \\ ax_2 + by_2 \end{pmatrix}$$

$$= \begin{pmatrix} a_{11}ax_1 + a_{11}by_1 + a_{12}ax_2 + a_{12}by_2 \\ a_{21}ax_1 + a_{21}by_1 + a_{22}ax_2 + a_{22}by_2 \end{pmatrix}$$

$$= \begin{pmatrix} a_{11}ax_1 + a_{12}ax_2 + a_{11}by_1 + a_{12}by_2 \\ a_{21}ax_1 + a_{22}ax_2 + a_{21}by_1 + a_{22}by_2 \end{pmatrix}$$

$$= a\begin{pmatrix} a_{11}x_1 + a_{12}x_2 \\ a_{21}x_1 + a_{22}x_2 \end{pmatrix} + b\begin{pmatrix} a_{11}y_1 + a_{12}y_2 \\ a_{21}y_1 + a_{22}y_2 \end{pmatrix}$$

$$= aM\mathbf{x} + bM\mathbf{y}$$

Matrix multiplication is linear

 In particular, if we define f(x)=M • x, where M is a matrix and x is a vector, then

$$f(a\mathbf{x} + b\mathbf{y}) = M(a\mathbf{x} + b\mathbf{y})$$
$$= aM\mathbf{x} + bM\mathbf{y}$$
$$= af(\mathbf{x}) + bf(\mathbf{y})$$

 Where the middle step can be verified using algebra (next slide)

Composition of Transformations

- If we use one matrix, M₁ for one transform and another matrix, M₂ for
 a second transform, then the matrix for the first transform followed by
 the second transform is simply M₂M₁
- This follows from the associativity of matrix multiplication
 - $-M_{2}(M_{1}x)=(M_{2}M_{1})x$
- · This generalizes to any number of transforms