Probabilistic Fitting

- · Generative probabilistic model
 - Tells a story about how stochastic data comes to be
 - Darts fall around the center of the board, but where exactly?
 - Consider a model with parameters, θ
 - Consider an observation, x_i
 - We denote the probability of seeing x_i under the model by:

$$p(x_i \mid \Theta)$$

Read "given" or "conditioned on"

Restricts to the case of θ

Defined by $\frac{P(A \mid B)}{P(B)} = \frac{P(A,B)}{P(B)}$

Probabilistic Fitting

 So, given the model, we have the probability of observing the data

$$p(\mathbf{x} \mid \Theta) = \prod p(x_i \mid \Theta)$$

- But what we really want is the probability of the model (parameters) given the data!
- Bayes rule comes to the rescue!

Probabilistic Fitting

- Multiple observations
 - Suppose we have multiple observations, in a vector x
 - What is the probability of x?
- If observations are independent then probability is the product of the individual observations
 - Essentially a definition, but is consistent with intuition
 - The observations are conditionally independent **given** the model
- So, the probability of x is then:

$$p(\mathbf{x} \mid \Theta) = \prod p(x_i \mid \Theta)$$

Bayes Rule

• Bayes rule:
$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

• Proof
$$P(A,B) = P(B \mid A)P(A) = P(A \mid B)P(B)$$

• With our notation:
$$P(\Theta \mid \mathbf{x}) = \frac{P(\mathbf{x} \mid \Theta)P(\Theta)}{P(\mathbf{x})}$$

Probabilistic Fitting

• If we assume **uniform** prior, then we can find the posterior density for the parameters by:

$$p(\Theta \mid \mathbf{x}) \propto p(\mathbf{x} \mid \Theta)$$

- Now the objective is to find the parameters Θ such that this *likelihood* is maximum
- Note--this is the same as finding the parameters which minimize the **negative log likelihood**

Probabilistic fitting with independence and uniform prior

Finding the "best" model under simple circumstances

$$\begin{array}{ll} \max \min_{\Phi} \operatorname{p}(\Theta \mid \mathbf{x}) & \text{(one definition of best } \Theta) \\ \max \min_{\Phi} \operatorname{p}(\mathbf{x} \mid \Theta) & \text{(by Bayes rule, uniform prior)} \\ \min \min_{\Phi} \operatorname{p}(\mathbf{x} \mid \Theta) & \text{(log is monotonic increasing)} \\ \min \min_{\Phi} \operatorname{p}(\mathbf{x} \mid \Theta) & \text{(by independence)} \\ \min \min_{\Phi} \operatorname{p}(\mathbf{x} \mid \Theta) & \text{(high school math)} \\ \end{array}$$

- Back to lines: ax+by+c=0 where $a^2+b^2=1$
- Algebraic fact: Distance squared from (x,y) to this line is (ax+by+c)²
- **Generative model** for lines: Choose point on line, and then, with probability proportional to p(d), **normally distributed** (Gaussian), go a distance d from the line.
- Now the probability of an observed (x,y) is given by

$$p((x,y) \mid \Theta) \propto \exp(-\frac{(ax+by+c)^2}{2\sigma^2})$$

We have the probability density of the observed (x,y) given by

$$p((x,y) \mid \Theta) \propto \exp(-\frac{(ax+by+c)^2}{2\sigma^2})$$

The negative log is

$$\frac{(ax+by+c)^2}{2\sigma^2}$$

And the negative log likelihood of multiple observations is

$$\frac{1}{2\sigma^2}\sum_i(ax_i+by_i+c)^2$$

From the previous slide, we had that the negative log likelihood of multiple observations is given by

$$\frac{1}{2\sigma^2} \sum_{i} (ax_i + by_i + c)^2$$
 (where $a^2 + b^2 = 1$)

This should be recognizable as homogeneous least squares

Thus we have shown that least squares is maximum likelihood estimation under normality (Gaussian) error statistics!

Fitting curves other than lines

- In principle, an easy generalization
 - Assuming Gaussian error statistics, Euclidean distance is a good
 - The probability of obtaining a point, given a curve, is given by a negative exponential of distance squared
- In practice, this can be hard
 - It can be difficult to compute the distance between a point and a
 - Circles, ellipses, and a few others are not too hard
 - Otherwise, craft an approximation
 - §15.3 has more

More on the Bayesian Method

- Recall that a generative probabilistic model
 - Tells a story about how stochastic data comes to be
 - Provides likelihood given data given model

$$p(\{\mathbf{x}_i\} | \Theta)$$

- · Bayes rule
 - Tells us how to go from data given model to model given data
 - Tell us how to combine prior knowledge and evidence from data
 - Gives a probability distribution for an answer
 - · Ideal for further reasoning · Supports "risk" functions
 - · Supports various estimates (see cartoon on next slide)

 $\Rightarrow p(\Theta \mid \mathbf{x})$

Information from Priors and Data

- Recall that vision problems do not have unique solutions!
 - We have to choose solutions suggested both by data and by what we believe (world knowledge)
 - What we believe about the world is the the prior