Causes of color

- The sensation of color is caused by the brain.
- One way to get it is through a **response** of the eye to the presence/absence of light at various wavelengths.
- Dreaming, hallucination, etc.
- Pressure on the eyelids

Trichromaticity

Empirical fact--colors can be approximately described/matched by three quantities (assuming normal color vision).

Need to reconcile this observation with the spectral characterization of light

Color receptors

"Long" cone "Medium" cone "Short" cone

Some understanding results from an analogy with camera sensors

Directly determining the camera like sensitivity response is hard!

Colour Reproduction

Motivates specifying color numerically (there are other reasons to do this also)

General (man in the street) observation--color reproduction *sort of* works.
Specifying Colour

Three standard lights

Match?

Test Light

Trichromacy

Experimental fact about people (with “normal” colour vision)—-matching works (for reasonable lights), provided that we are sometimes allowed negative values.

Our “knob” positions correspond to \((X,Y,Z)\) in the standard colorimetry system.

Technical detail: \((X,Y,Z)\) are actually arranged to be positive by a linear transformation, but these “knob” positions cannot correspond to any physical light.
Specifying Colour

We don’t want to do a matching experiment every time we want to use a new color!

Grassman’s Contribution

Colour matching is linear
Matching is Linear (Part 1)

C1 is matched with (X1, Y1, Z1)

C = a * C1

C is matched with a * (X1, Y1, Z1)
Matching is Linear (formal)

\[C = a \cdot C_1 + b \cdot C_2 \]

- \(C_1 \) is matched with \((X_1,Y_1,Z_1)\)
- \(C_2 \) is matched with \((X_2,Y_2,Z_2)\)

\(C \) is matched by

\[a \cdot (X_1,Y_1,Z_1) + b \cdot (X_2,Y_2,Z_2) \]

Specifying Color

On my monitor it’s \((R,G,B) = (75,150,100)\)

Specifying Colour

But what is \((R,G,B)\)?
Specifying Colour

R matches \((X_r, Y_r, Z_r)\)

G matches \((X_g, Y_g, Z_g)\)

B matches \((X_b, Y_b, Z_b)\)

\[X = 75 \times X_r + 150 \times X_g + 100 \times X_b \]

\[Y = 75 \times Y_r + 150 \times Y_g + 100 \times Y_b \]

\[Z = 75 \times Z_r + 150 \times Z_g + 100 \times Z_b \]

(No need to match--just compute!)

Then by \((R,G,B)=(75,150,100)\) you mean \((X,Y,Z)\), where

..., now that we have specified the colour, I can print it!
\[
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} =
\begin{bmatrix}
X_r & X_g & X_b \\
Y_r & Y_g & Y_b \\
Z_r & Z_g & Z_b
\end{bmatrix}
\begin{bmatrix}
75 \\
100 \\
150
\end{bmatrix}
\]

\[
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} =
\begin{bmatrix}
X_r & X_g & X_b \\
Y_r & Y_g & Y_b \\
Z_r & Z_g & Z_b
\end{bmatrix}
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]

Colour Reproduction (Monitors & Projectors)

\[
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} = M
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]

Find (R,G,B)

\[
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix}_{\text{apple}}
\]
Possible problems?

XYZ color space

XYZ color space is a linear transformation of the matches to standard lights.

The transformation is used to ensure that all color coordinates are positive.

This means that XYZ corresponds to matches of fictitious (physically impossible) lights.
The gamut of all colors

Available from efg2.com
Qualitative features of CIE x, y

• Linearity implies that colors obtainable by mixing lights with colors A, B lie on line segment with endpoints at A and B.
• Monochromatic colours (spectral colors) run along the “Spectral Locus.”

Matching is only for “aperture” color

• When color is viewed in the context of other colors numerous effects occur which complicate the characterization of color (simultaneous contrast, color constancy, etc).
• Other complications include chromatic aberration in the eye and different spatial resolution for different colors (these are linked).
Colour Reproduction

Key point--color reproduction is based on “metamerism”

Metameric match--colors which match, despite different spectra.

Duplicating spectra would work, but for practical reasons, we duplicate the match.

For reflective surfaces, e.g. prints, this means that the match can change if the illumination changes.

The quest for uniform colour spaces

• Definition of uniform: equal (small!) steps give the same perceived color changes.
• XYZ is not uniform!
• Uniformity only applies to small differences. There is no theory for numerically deciding if yellow is perceptually closer to green or red.

MacAdam Ellipses (scaled by a factor of 10) on CIE x, y

\[(u', v') = \frac{4X}{(X+15Y+3Z)}, \frac{9Y}{(X+15Y+3Z)}\]

CIE u’v’ is a linear colour space where colour differences are more uniform
Non-linear colour spaces

- HSV: Hue, Saturation, Value are non-linear functions of XYZ.
 - hue relations are naturally expressed in a circle
 - popular in graphics
 - a variety of similar but different formulas are available for converting between RGB and HSV
- Munsell: describes surfaces, rather than lights - less relevant for graphics. Surfaces must be viewed under fixed comparison light

- L*a*b: Another attempt to approximate uniformity
 - popular in colour science
Subtractive mixing

- Treatment so far has been for additive mixing
- Inks subtract light from white.
- Linearity depends on pigment properties - often non-linear!
- Typical system (printers)
 - Cyan = White – Red
 - Magenta = White – Green
 - Yellow = White – Blue.
- Usually have black also, because colored inks are more expensive, black is very common, and registration is hard
- For a good choice of inks, matching is not too from linear
- Printers can have both additive and subtractive qualities

Device independent colour imaging

- Problem: ensure that colours on a display, printer, etc. give the same experience that a viewer would have seeing relevant light spectra
- Difficulty: limited gamuts of most output devices
- Strategy: exploit a model of human experience
 - Simple model: The CIExYZ matching paradigm
 + Being implemented in "Color Management Systems"
 - These try to relieve the user of the different color capabilities of devices
 - Complicated because every device needs to register properly with the CMS
- Deficiencies—as we have seen, the CIE systems does not count for spatial effects, illumination environments, etc., and these are important
- Some progress is being made but the models tend to be complicated