Intrinsic camera parameters (82.2,83.3)

Recall the basic equation
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Note that the special projection matrix can be ignored if we remember that by
either (1) making the extrinsic parameter matrix 3x4 by dropping the bottom row,
or (2) making the intrinsic parameter matrix 3x4 by adding a column of zeros

Recall the meaning of o and 3 from the main slide sequence.

We pick up the book’s treatment after the authors give their version of o and 3 on
page 29.



Intrinsic camera parameters (82.2,83.3)

In general, the origin of the camera coordinate system is at a corner C of the retina (e.g.,
in the case depicted in Figure 2.8, the lower left corner or sometimes the upper-left corner, when
the image coordinates are the row and column indexes of a pixel) and not at its center, and
the center of the CCD matrix usually does not coincide with the principal point Cy. This adds
two parameters uo and vg that define the position (in pixel units) of Cy in the retinal coordinate
system, and Eq. (2.10) is replaced by

(2.11)

Finally, the camera coordinate system may also be skewed due to some manufacturing
error, so the angle 6 between the two image axes is not equal to (but of course not very different
from either) 90°. In this case, it is easy to show that Eq. (2.11) transforms into
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Cbmbining Eqgs. (2.9) and (2.12) now allows us to write the change in coordinates between
the physical image frame and the normalized one as a planar affine transformation—that is,
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Putting it all together, we obtain
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and P = (x,y,2, )7 denotes this time the homogeneous coordinate vector of P in the cam-
era coordinate syster. In other words, homogeneous coordinates can be used to represent the
perspective projection mapping by the 3 x 4 matrix M. _

Note that the physical size of the pixels and the skew are always fixed for a given camera
and frame grabber, and in principle they can be measured during manufacturing (of course, this
information may not be available—for example, in the case of stock film footage, or when the
frame grabber’s digitization rate is unknown). For zoom lenses, the focal length may vary with
time, along with the image center when the optical axis of the lens is not exactly perpendicular
to the image plane. Simply changing the focus of the camera also affects the magnification since
it changes the lens-to-retina distance, but we continue to assume that the camera is focused at
infinity and ignore this effect in the rest of this chapter.



2.2.2 Extrinsic Parameters

Let us now consider the case where the camera frame (C) is distinct from the world frame (W).

Noting that
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and substituting in Eq. (2.14) yields

p=-MP, where M=K(R ¢, (2.15)
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R = $R is a rotation matrix, f = COw is a translation vector, and P = (Vx, %y, ¥z, )7
denotes the homogeneous coordinate vector of P in the frame (W).

This is the most general form of the perspective projection equation. We can use it to
determine the position of the camera’s optical center O in the world coordinate system. Indeed,
as shown in the exercises, its homogenous coordinate vector O verifies MO = 0. (Intuitively, this
is rather obviots since the optical center is the only point whose image is not uniquely defined.)
In particular, if M = (A b), where A is a nonsingular 3 x 3 matrix and b is a vector in R,
then the nonhomogeneous coordinate vector of the point O is simply —A~1b.
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Sec. 2.2 Camera Parameters and the Perspective Projection 31

A projection matrix can be written explicitly as a function of its five intrinsic parameters (c,

B, uo, vo, and 0) and its six extrinsic ones (the three angles defining R and the three coordinates
of t), namely,
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where r1 , r2 , and r3 denote the three rows of the matrix R and ¢,, t,, and t, are the coordinates of
the vector t. If R is written as the product of three elementary rotations, the vectorsr; (i = 1,2, 3)
can of course be written explicitly in terms of the corresponding three angles.



Intrinsic camera parameters (82.2,83.3)

3.2.2 Estimation of the Intrinsic and Extrinsic Parameters

Once the projection matrix M has been estimated, its expression in terms of the camera intrinsic
and extrinsic parameters (Eq. [2.17] in chapter 2) can be used to recover these parameters as

follows: We write as before M = (A b), with al, al, and a} denoting the rows of A. We
obtain

T T T
ar; —acotor; + uor;

a
p(A b)=K(R t)=pla; |=| Sii9r§+vor§ ,
al T

where p is an unknown scale factor introduced here to account for the fact that the recovered
matrix M has unit Frobenius form since |/M| = |m| = 1.



In particular, using the fact that the rows of a rotation matrix have unit length and are
perpendicular to each other yields immediately

p =¢/lasl,

r; = pas,

uo = p*(a; - as),
vo = p*(az - a3),

where ¢ = FI. (3.11)

Since 6 is always in the neighborhood of 7 /2 with a positive sine, we have
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since the sign of the magnification parameters « and § is normally known in advance and can be
taken to be positive.
We can now compute r; and r, from the second part of Eq. (3.12) as
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rp, =r3 Xry.

Note that there are two possible choices for the matrix R depending on the value of ¢.
The translation parameters can now be recovered by writing Kt = pb, and hence t = pK~1b.
In practical situations, the sign of ¢, is often known in advance (this corresponds to knowing
whether the origin of the world coordinate system is in front or behind the camera), which allows
the choice of a unique solution for the calibration parameters.



