From Lowe, IJCV 2004

Can you find the locomotive? Can a computer program?

Distinctive Key-Points

- · Edges are interesting, but are they really distinctive?
 - Not for many applications because they do not have good localization
- More distinctive is a corner or a grid point
- Various strategies exist for finding "key-points" that are distinctive and localizable
- One idea is to look for edgy areas where one edge direction does NOT overly dominate the other
 - EG, a corner has both horizontal and vertical responses
- Consider at different scales

Invariant feature detection*

- Consider representing an image of an object with a collection of descriptive local features
- Most useful if these occur in "edgy" areas.
- Common modern strategy is do detect somewhat robust "interest points" and form a descriptor for the local area.
- Example descriptor is a histogram of edge orientations (local texture).

*Good reference is Lowe, IJCV, 2004

From Lowe, IJCV 2004

Invariant feature detection

• To "find" the object, match the local features

Invariant feature detection

Invariant feature detection

- Problems
 - Consistently determining which features goes with which
 - Covered later
 - Camera view changes
 - · Approximately affine
 - · Further approximated by scale and rotation

Invariant feature detection

- Dealing with to camera view changes
 - Scaling and rotation can approximate camera view changes for small patches (locally planar)
 - Consider detector scale and direction (gradient)
 - This sets up a 2D coordinate system that is invariant to scale and rotation
 - One strategy is to make edge histogram grid with scaled bins and aligned with direction
 - Now, local feature description is invariant to scale and rotation.

Initial matching

After pruning outliers (Covered later)

Syllabus Notes

- Next topics segmentation, grouping and fitting.
- We will do perhaps half each of §14, §15, and §16.

Segmentation, Grouping, and Fitting

- Collect together tokens that belong together
- Gives a compact representation from an image/motion sequence/set of tokens that can be significantly easier to deal with
- What is the "right" group is often dependent on the application
- Broad theory is not known at present (and may not exist)
- These are general concepts--apply to many things, not just breaking images into regions of the same color.

Segmentation, Grouping, and Fitting

- Terminology varies and the usage and the meaning of segmentation, grouping, and fitting overlap. However somewhat common usage:
 - Grouping (or clustering) is quite general sometimes suggest a relatively high level (group the black and white halves of a penguin together)
 - Segmentation is suggestive of the grouping is done at a low level and is quite spatially (or temporally coherent) given regions in time or space
 - Fitting when the focus is on a model associated with tokens. Issues:
 - · which model?
 - which token goes to which element in the model (correspondence)?
 - how many elements in the model (how complex should it be)?

General ideas

- Tokens
 - whatever we need to group (e.g. pixels, points, surface elements)
- Top down segmentation
 - tokens belong together because they lie on the same object
- Bottom up segmentation
 - tokens belong together because they are locally coherent
- These two are not mutually exclusive

Why do these tokens belong together?

Basic ideas of grouping in humans

- · Figure-ground discrimination
 - grouping can be seen in terms of allocating some elements to a figure, some to ground (impoverished theory)
- Gestalt properties
 - Elements in a collection of elements can have properties that result from relationships (e.g. Muller-Lyer effect)
 - A series of factors affect whether elements should be grouped together
 - · Gestalt factors

Background Subtraction

- If we know what the background looks like, it is easy to identify "interesting bits"
- Applications
 - Person in an office
 - Tracking cars on a road
 - Surveillance
- Approach:
 - Use a moving average to estimate background image
 - Subtract from current frame
 - Large absolute values are interesting pixels
 - trick: use morphological operations to clean up pixels (remove "holes")

Segmentation as clustering

- Cluster together (pixels, tokens, etc.) that belong together
- We assume that we can compute how close tokens are, or how close a token is to cluster.

Data Representation

- Most common is an N dimensional "feature" vector.
- Most common distance is Euclidian distance.
- Be careful with scaling and units!
- Probabilistic modals finesse multiple modalities
- Problems with correlated variables can be mitigated using transformations and data reduction methods such as PCA, ICA.

Why is clustering hard?

Main reason

 The number of possible clusterings is exponential in the number of data points

Other issues

- The number of clusters is usually **not** known
- A good distance function between points may not be known
- A good model explaining the existence of clusters is usually not available.
- High dimensionality

Clustering approaches

- Agglomerative clustering
 - initialize: every item is a cluster
 - attach item that is "closest" to a cluster to that cluster
 - repeat
- Divisive clustering
 - split cluster along best boundary
 - repeat
- Probabilistic clustering
 - Define a probabilistic grouping model

Simple clustering approaches

- Point-Cluster or Cluster-Cluster distance
 - single-link clustering (minimum distance from point to points in clusters or among pairs of points, one from each cluster)
 - complete-link clustering (maximum)
 - group-average clustering (average)
 - (terms are not important, but concepts are worth thinking about)
- Dendrograms
 - classic picture of output as clustering process continues

Syllabus Notes

- Next topics segmentation, grouping and fitting.
- We will do perhaps half each of §14, §15, and §16.

K-Means

- Choose a fixed number of clusters ("K")
- Choose cluster centers (means) and point-cluster allocations (membership) to minimize the error

$$\sum_{i \in \text{clusters}} \left\{ \sum_{j \in \text{elements of i'th cluster}} \left\| x_j - \mu_i \right\|^2 \right\}$$

• x's could be any set of features for which we can compute a distance (careful with scaling)

K-Means

• Want to minimize

$$\sum_{\text{eclusters}} \left\{ \sum_{j \in \text{elements of i'th cluster}} \left\| x_j - \mu_i \right\|^2 \right\}$$

- Cannot do this optimization by search, because there are too many possible allocations.
- Standard difficulty which we handle with an iterative process (chicken and egg)

K-means flow chart Choose K Guess Guess the means membership Assume membership is Assume means are fixed. fixed. Take averages Find cluster to get cluster with closest centers mean for (means) each point

K-Means algorithm (intuition)

- If we know the cluster centers, the best cluster for each point is easy to compute
 - Just compute the distance to each to find the closest
- If we know the best cluster for each point, the cluster centers are also easy to compute
 - Just average the points in each cluster
- Algorithm
 - 1) Guess one of the two.
 - 2) Alternatively re-compute the values for each

Notes on K-Means

- K-means is "hard" clustering-each point is completely in exactly one cluster
- What you get is a function of starting "guess"
- The error goes down with every iteration
 - This means you get a local minimum
- Unfortunately, the dimension of the space is usually large, and highdimensional space have lots of local maximum (standard problem!)
 - Dimensionality here is K*dim(x)
- Finding the global minimum for a real problem is very optimistic!

Graph theoretic clustering

- Represent distance between tokens using a weighted graph.
 - affinity matrix
- Cut up this graph to get subgraphs with strong interior links (and weak links between the subgraphs).

Measuring Affinity

Intensity

$$aff(x, y) = \exp\left\{-\left(\frac{1}{2}\sigma_i^2\right)(\|I(x) - I(y)\|^2)\right\}$$

Distance

$$aff(x, y) = \exp\left\{-\left(\frac{1}{2\sigma_d^2}\right)(\|x - y\|^2)\right\}$$

Texture

$$aff(x, y) = \exp\left\{-\left(\frac{1}{2\sigma_i^2}\right)\left(\left\|c(x) - c(y)\right\|^2\right)\right\}$$

- We want elements within this cluster to, on the whole, have strong affinity with one another
- This suggests maximizing $a^T A a$
- · But need the constraint

$$a^{T}a = 1$$

(ex am)

Eigenvectors and cuts

- We want to maximize $a^{T}Aa$ subject to $a^{T}a=1$
- This is an eigenvalue problem choose the eigenvector of A with largest eigenvalue
- This gives the cluster with greatest internal affinity
 - Ideally, most elements of the eigenvalue are near zero, and the others tell us which tokens are in the cluster

Normalized cuts

- Previous criterion evaluates within cluster similarity, but does not promote large differences between clusters across cluster difference
- N-cuts proposes maximizing the within cluster similarity **compared** to the across cluster difference
- Write graph as V, one cluster as A and the other as B. (V=AUB).
- Maximize

$$\left(\frac{assoc(A,A)}{assoc(A,V)}\right) + \left(\frac{assoc(B,B)}{assoc(B,V)}\right)$$

• (Solution follows to keep notes self-contained).

Optional

Normalized cuts

- Write a vector y whose elements are 1 if item is in A, -b if it's in B
- Write the matrix of the graph as W, and the matrix which has the row sums of W on its diagonal as D, 1 is the vector with all ones.
- With some algebra, the criterion becomes $\min_{\mathbf{y}} \left(\frac{\mathbf{y}^T (D W) \mathbf{y}}{\mathbf{y}^T D \mathbf{y}} \right)$
- And we have a constraint $y^T D1 = 0$
- This is hard to do, because y's values are quantized

Optional

Normalized cuts

• Instead, solve the generalized eigenvalue problem

$$\max_{y} (y^{T}(D-W)y)$$
 subject to $(y^{T}Dy = 1)$

· which gives

$$(D-W)y = \lambda Dy$$

• Now look for a quantization threshold that maximizes the criterion --- i.e all components of y above that threshold go to one, all below go to -b

