
Administrivia
Assignment two is now posted:
    http://www.cs.arizona.edu/classes/cs477/spring10/ua_cs_only/assignments
Slides now being posted:
    http://www.cs.arizona.edu/classes/cs477/spring10/ua_cs_only/lectures

Lectures and assignments will require either connecting from a UA machine, OR
login id (“me”)  and password (“vision4fun”).

TA office hours (in 927B)
Mondays 10-11am
Wednesdays 1-2pm

Kobus’s office hours by electronic sign up (reserve by 6:00pm previous day)
  Tuesdays at 5-5:20 pm

Thursdays 9-9:30 am AND 5-5:20 pm

Image Formation (non-linear transform)

      is often ignored (assumed to be the identity), but this is not
a safe assumption, especially when color or radiometric
measurements matter.

Commonly images are “gamma” corrected by raising the RGB
values (normalized to [0,1]) to the power 1/(2.2).

Note that in such an image, a number twice as large does not
mean that the light had twice the power!

To linearize RGB’s from such a signal we compute:
           p=F-1(v)=255*(v/255)^2.2

F
(k)

Supplemental material

Image Formation (non-linear transform)

The non-linear transformation is added by captured devices
after the raw capture (which is typically linear).

Because it is a single function applied to responses, it is easy
to measure and compensate for.

Supplemental material

Image Formation (non-linear transform)
Supplemental material

Why are images typically encoded in this way?

Historically, images have been gamma corrected on the
assumption that their values drive a CRT (cathode ray tube)
monitor which are non-linear devices. Their theoretical
response to a voltage is energy output proportional to that
voltage raised to the (5/2) power. Appropriately gamma
corrected images display as linear on such devices.



Image Formation (non-linear transform)

Coincidentally, this typically gamma correction is a sensible
way to encode image data into a limited number of values (e.g.
256) due to the noise sensitivity of the human vision system.

Hence, while CRT displays are now obsolete, images are still
typically non-linear, and the signal to modern displays (which
are linear) are typically adjusted assuming typical incoming
non-linear in images.

If you have access to a Mac, then you can play with this under
System Preferences --> Displays --> Color --> Calibrate

Supplemental material

Linear Least Squares (§3.1)

• Very common problem in vision: solve an over-constrained system of
linear equations
– e.g., Ux=y, where U has more rows than needed
– e.g., Ux=0, |x|=1, where U has more rows than needed

• More equations allows multiple measurements to be used
• Least squares means that you minimize squared error (the difference

between your model and your data)
• Least squares minimization is (relatively) easy
• Not very robust to outliers (assumes error is Gaussian)

We will look at two problems

First, where U has more rows than needed

Second,   subject to               were U has more rows than
needed

We can use the first for naïve spectral camera calibration.

We will use the second problem for geometric camera
calibration.

Linear Least Squares (§3.1)

� 

Ux = y

� 

Ux = 0

� 

x =1

Problem one                 where U has more rows than needed

U is not square, so inverting it does not work

In fact, usually there is no solution. We need to redefine what it
means to “solve the equation”.

We seek the “best” answer but what is that?

Non-homogeneous Least Squares*

� 

Ux = y

Math aside, #3

* This is regression by a different name.



Define                      and

The least squares solution which is the one that has minimum E.

We can derive the answer by differentiating with respect to each
xi, and setting all resulting equations to zero (see supplementary
slides).

The answer is given by

� 

e =Ux! y

� 

E = e
2

= e
T
e

Math aside, #3
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x =U
†
y  where U †

= (UT
U)!1

U
T  is the pseudoinverse of U

Non-homogeneous Least Squares

You should be able to set up

You should know that it is solved by

You can assume that you can look up

*You should also keep in mind that for numerical stability, one may have to
use a different approach to solve (without matrix inversion) the following

Non-homogeneous linear least squares summary
(the part you need to know)
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Important

Remember the fact that the camera has a spectral sensitivity
R(λ). So how do we find it out?

Recall that

has the discrete version

(previously we accounted for multiple channels with the
superscript (k), but here we just consider each channel
separately)

Non-homogeneous linear least squares
(example one---naïve spectral camera calibration)

� 

! = L" (#)R(#)d#

� 

! = L•R

Important

Strategy: measure some spectra entering the camera, Li, and
note the response, ρi.

So we have, for a bunch of measurements, i:
 ρi = Li • R

If we don’t have enough measurements, then the problem is
under constrained. To account for noise, we want to use
multiple measurements.

Non-homogeneous linear least squares
(example one---naïve spectral camera calibration)

Important



From:
 ρi = Li  •  R

The path is clear. Just form a matrix L with rows  Li, a
vector P with elements ρi, and solve the least squares
equation

LR = P

Non-homogeneous linear least squares
(example one---naïve spectral camera calibration)

Important

Can write  y=mx + b as:
(x 1)*(m b) = y

Non-homogeneous linear least squares
(example two---naïve line fitting)

Important

Can write  y=mx + b as:
(x 1)*(m b) = y

So form
a matrix U with rows (xi 1)
a vector y with elements yi
a vector of unknowns x=(a,b)

and use the formula to solve  Ux=y

Non-homogeneous linear least squares
(example two---naïve line fitting)

Important

Image Formation (Geometric)



Pinhole cameras

• Abstract camera model--
box with a small hole in it

• Pinhole cameras work for
deriving algorithms--a real
camera needs a lens

Distant objects are smaller

C’
B’

Size Constancy

Object size vs. object depth

(Images copyright John H. Kranz, 1999)

Slide courtesy
Frank Dellaert


