

Administrivia

Assignment two is now posted:

http://www.cs.arizona.edu/classes/cs477/spring10/ua_cs_only/assignments

Slides now being posted:

http://www.cs.arizona.edu/classes/cs477/spring10/ua_cs_only/lectures

Lectures and assignments will require either connecting from a UA machine, OR
login id ("me") and password ("vision4fun").

TA office hours (in 927B)

Mondays 10-11am

Wednesdays 1-2pm

Kobus's office hours by electronic sign up (reserve by 6:00pm previous day)

Tuesdays at 5-5:20 pm

Thursdays 9:30 am AND 5-5:20 pm

Supplemental material

Image Formation (non-linear transform)

$F^{(k)}$ is often ignored (assumed to be the identity), but this is not a safe assumption, especially when color or radiometric measurements matter.

Commonly images are "gamma" corrected by raising the RGB values (normalized to [0,1]) to the power 1/(2.2).

Note that in such an image, a number twice as large does not mean that the light had twice the power!

To linearize RGB's from such a signal we compute:

$$p = F^{-1}(v) = 255 * (v/255)^{2.2}$$

Supplemental material

Image Formation (non-linear transform)

Supplemental material

The non-linear transformation is added by captured devices **after** the raw capture (which is typically linear).

Because it is a single function applied to responses, it is easy to measure and compensate for.

Image Formation (non-linear transform)

Why are images typically encoded in this way?

Historically, images have been gamma corrected on the assumption that their values drive a CRT (cathode ray tube) monitor which are non-linear devices. Their theoretical response to a voltage is energy output proportional to that voltage raised to the (5/2) power. Appropriately gamma corrected images display as linear on such devices.

Supplemental material

Image Formation (non-linear transform)

Coincidentally, this typically gamma correction is a sensible way to encode image data into a limited number of values (e.g. 256) due to the noise sensitivity of the human vision system.

Hence, while CRT displays are now obsolete, images are still typically non-linear, and the signal to modern displays (which are linear) are typically adjusted assuming typical incoming non-linear in images.

If you have access to a Mac, then you can play with this under System Preferences --> Displays --> Color --> Calibrate

Linear Least Squares (§3.1)

- Very common problem in vision: solve an over-constrained system of linear equations
 - e.g., $Ux=y$, where U has more rows than needed
 - e.g., $Ux=0$, $|x|=1$, where U has more rows than needed
- More equations allows multiple measurements to be used
- Least squares means that you minimize squared error (the difference between your model and your data)
- Least squares minimization is (relatively) easy
- Not very robust to outliers (assumes error is Gaussian)

Linear Least Squares (§3.1)

We will look at two problems

First, $Ux = y$ where U has more rows than needed

Second, $Ux = \mathbf{0}$ subject to $|x|=1$ where U has more rows than needed

We can use the **first** for naïve spectral camera calibration.

We will use the **second** problem for geometric camera calibration.

Math aside, #3

Non-homogeneous Least Squares*

Problem one $Ux = y$ where U has more rows than needed

U is not square, so inverting it does not work

In fact, usually **there is no solution**. We need to redefine what it means to “solve the equation”.

We seek the “best” answer but what is that?

* This is regression by a different name.

Math aside, #3

Non-homogeneous Least Squares

Define $\mathbf{e} = U\mathbf{x} - \mathbf{y}$ and $E = |\mathbf{e}|^2 = \mathbf{e}^T \mathbf{e}$

The least squares solution which is the one that has minimum E.

We can derive the answer by differentiating with respect to each x_i , and setting all resulting equations to zero (see supplementary slides).

The answer is given by

$\mathbf{x} = U^\dagger \mathbf{y}$ where $U^\dagger = (U^T U)^{-1} U^T$ is the pseudoinverse of U

Important

Non-homogeneous linear least squares summary (the part you need to know)

You should be able to set up

$$U\mathbf{x} = \mathbf{y}$$

You should know that it is solved by

$$\mathbf{x} = U^\dagger \mathbf{y} \text{ where } U^\dagger \text{ is the pseudoinverse of } U$$

You can assume that you can look up

$$U^\dagger = (U^T U)^{-1} U^T$$

*You should also keep in mind that for numerical stability, one may have to use a different approach to solve (without matrix inversion) the following

$$U^T U \mathbf{x} = U^T \mathbf{y}$$

Important

Non-homogeneous linear least squares (example one---naïve spectral camera calibration)

Remember the fact that the camera has a spectral sensitivity $R(\lambda)$. So how do we find it out?

Recall that $\rho = \int L(\lambda)R(\lambda)d\lambda$

has the discrete version

$$\rho = \mathbf{L} \bullet \mathbf{R}$$

(previously we accounted for multiple channels with the superscript (k), but here we just consider each channel separately)

Important

Non-homogeneous linear least squares (example one---naïve spectral camera calibration)

Strategy: measure some spectra entering the camera, \mathbf{L}_i , and note the response, ρ_i .

So we have, for a bunch of measurements, i:

$$\rho_i = \mathbf{L}_i \bullet \mathbf{R}$$

If we don't have enough measurements, then the problem is under constrained. To account for noise, we want to use multiple measurements.

Important

Non-homogeneous linear least squares (example one---naïve spectral camera calibration)

From:

$$\rho_i = \mathbf{L}_i \cdot \mathbf{R}$$

The path is clear. Just form a matrix \mathbf{L} with rows \mathbf{L}_i , a vector \mathbf{P} with elements ρ_i , and solve the least squares equation

$$\mathbf{L}\mathbf{R} = \mathbf{P}$$

Important

Non-homogeneous linear least squares (example two---naïve line fitting)

Can write $y=mx + b$ as:

$$(x \ 1) \cdot (m \ b) = y$$

Important

Non-homogeneous linear least squares (example two---naïve line fitting)

Can write $y=mx + b$ as:

$$(x \ 1) \cdot (m \ b) = y$$

So form

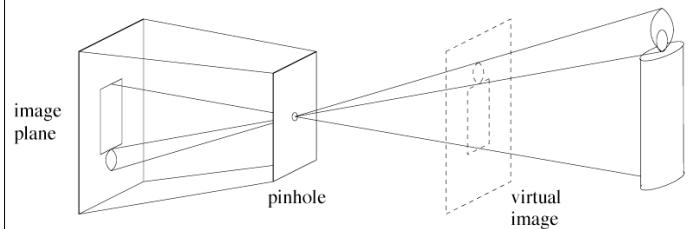
- a matrix \mathbf{U} with rows $(x_i \ 1)$
- a vector \mathbf{y} with elements y_i
- a vector of unknowns $\mathbf{x} = (a, b)$

and use the formula to solve $\mathbf{Ux} = \mathbf{y}$

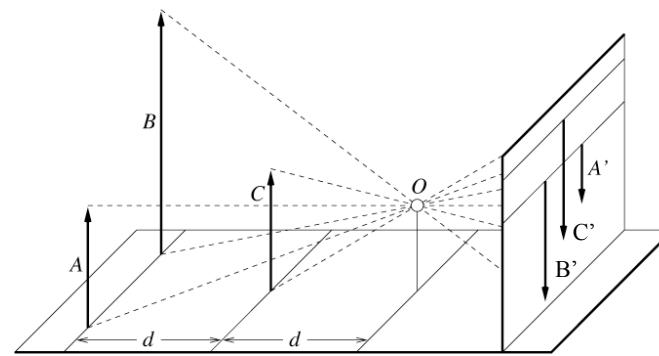
Image Formation (Geometric)

Pinhole cameras

- Abstract camera model--box with a small hole in it
- Pinhole cameras work for deriving algorithms--a real camera needs a lens



Distant objects are smaller



Size Constancy

Slide courtesy
Frank Dellaert

Object size vs. object depth

(Images copyright John H. Kranz, 1999)