Administrivia

Assignment two is now posted:
http://www.cs.arizona.edu/classes/cs477/spring10/ua_cs_only/assignments

Slides now being posted:
http://www.cs.arizona.edu/classes/cs477/spring10/ua_cs_only/lectures

Lectures and assignments will require either connecting from a UA machine, OR
login id (*me”) and password (“vision4fun”).

TA office hours (in 927B)
Mondays 10-11am
Wednesdays 1-2pm

Kobus’s office hours by electronic sign up (reserve by 6:00pm previous day)
Tuesdays at 5-5:20 pm
Thursdays 9-9:30 am AND 5-5:20 pm

Supplemental material

Image Formation (non-linear transform)

g is often ignored (assumed to be the identity), but this is not
a safe assumption, especially when color or radiometric
measurements matter.

Commonly images are “gamma” corrected by raising the RGB
values (normalized to [0,1]) to the power 1/(2.2).

Note that in such an image, a number twice as large does not
mean that the light had twice the power!

To linearize RGB’s from such a signal we compute:
p=F1(v)=255%(v/255)"2.2

Supplemental material

Image Formation (non-linear transform)

The non-linear transformation is added by captured devices
after the raw capture (which is typically linear).

Because it is a single function applied to responses, it is easy
to measure and compensate for.

Supplemental material

Image Formation (non-linear transform)

Why are images typically encoded in this way?

Historically, images have been gamma corrected on the
assumption that their values drive a CRT (cathode ray tube)
monitor which are non-linear devices. Their theoretical
response to a voltage is energy output proportional to that
voltage raised to the (5/2) power. Appropriately gamma
corrected images display as linear on such devices.




Supplemental material

Image Formation (non-linear transform) Linear Least Squares (§3.1)

Coincidentally, this typically gamma correction is a sensible
way to encode image data into a limited number of values (e.g.
256) due to the noise sensitivity of the human vision system.

e Very common problem in vision: solve an over-constrained system of
linear equations

— e.g., Ux=y, where U has more rows than needed

. . . . — e.g., Ux=0, Ixl=1, where U has more rows than needed
Hence, while CRT displays are now obsolete, images are still ¢

typically non-linear, and the signal to modern displays (which
are linear) are typically adjusted assuming typical incoming
non-linear in images. .

¢ More equations allows multiple measurements to be used

¢ Least squares means that you minimize squared error (the difference
between your model and your data)

Least squares minimization is (relatively) easy

. . * Not very robust to outliers (assumes error is Gaussian)
If you have access to a Mac, then you can play with this under

System Preferences --> Displays --> Color --> Calibrate

Math aside, #3
Linear Least Squares (§3.1) Non-homogeneous Least Squares®
We will look at two problems Problem one UX=Yy where U has more rows than needed
First, Ux =y where U has more rows than needed U is not square, so inverting it does not work
Second, Ux =0 subject to \x\ =1 were U has more rows than In fact, usually there is no solution. We need to redefine what it
needed means to “solve the equation”.
We can use the first for naive spectral camera calibration. We seek the “best” answer but what is that?
We will use the second problem for geometric camera
calibration. * This is regression by a different name.




Math aside, #3

Non-homogeneous Least Squares
Define e=Ux—y and E=l’ =e’e
The least squares solution which is the one that has minimum E.

We can derive the answer by differentiating with respect to each
X;, and setting all resulting equations to zero (see supplementary
slides).

The answer is given by

x=U'y where U =(U"U)'U" is the pseudoinverse of U

Important

Non-homogeneous linear least squares summary
(the part you need to know)

You should be able to set up
Ux=y
You should know that it is solved by

x=U"y where U" is the pseudoinverse of U

You can assume that you can look up
U= (UTU)—IUT

*You should also keep in mind that for numerical stability, one may have to
use a different approach to solve (without matrix inversion) the following

U'ux=U"y

Important
Non-homogeneous linear least squares

(example one---naive spectral camera calibration)

Remember the fact that the camera has a spectral sensitivity
R(A). So how do we find it out?

Recall that p= | LAR(A)A
has the discrete version

p =LeR

(previously we accounted for multiple channels with the
superscript (k), but here we just consider each channel
separately)

Important

Non-homogeneous linear least squares
(example one---naive spectral camera calibration)

Strategy: measure some spectra entering the camera, L;, and
note the response, p;.

So we have, for a bunch of measurements, i:
p;=L;*R

If we don’t have enough measurements, then the problem is
under constrained. To account for noise, we want to use
multiple measurements.




Important

Non-homogeneous linear least squares
(example one---naive spectral camera calibration)

From:
pi=L;, * R

The path is clear. Just form a matrix L with rows L;, a
vector P with elements p;, and solve the least squares
equation

LR=P

Non-homogeneous linear least squares
(example two---naive line fitting)

Can write y=mx + b as:
(x D*(mb) =y

Important

Important

Non-homogeneous linear least squares
(example two---naive line fitting)

Can write y=mx + b as:
(x D*(mb) =y

So form
a matrix U with rows (x; 1)
a vector y with elements y,
a vector of unknowns x=(a,b)

and use the formula to solve Ux=y

Image Formation (Geometric)




Pinhole cameras

¢ Pinhole cameras work for

e Abstract camera model-- deriving algorithms--a real

box with a small hole in it camera needs a lens

image
plane

-~ virtual
image

Distant objects are smaller
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Slide courtesy
Frank Dellaert

Size Constancy

Object size vs. object depth

(Images copyright John H. Kranz, 1999)




