
Shape from
shading

Photometric stereo example

Photometric Stereo

Thus combining the conditions given by each light, i, we get

� 

i =Vg

Where the ith element of i is Ii(x,y)  and the ith row of V is Vi

Since g has three elements, we need at least 3 lights.

If the number of lights is more than than 3, then use least squares!

You should understand the construction of this problem.

Dealing with shadows

Each point is in K images (one for each light)

If Ii(x,y) is in shadow, then ignore it.

As in the book, we can simplify this in a program by
multiplying both sides by a diagonal matrix with the image
intensities on the diagonal.



Dealing with shadows
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Dealing with shadows

The approach on the previous slide weights the equations
according to image intensity and so pixels in shadow are
ignored (weight is zero).

This changes the impact of the non-zero ones also (not
necessarily for the better, depending on your error model).

This has the advantage that you do not need a threshold for
deciding how dark a pixel has to be before it is ignored.
Instead, the darker they are, the less important they are.

Note that weighting rows is a good general trick for getting
least squares to do what you want.

Recovered reflectance Recovered normal field



From Normals to Shape

� 

From g we can get the normal ˆ n =
g

g

It is natural to represent surface as a depth map (x,y,f(x,y))

But what is the relationship between that and the normals?

From Normals to Shape

Given (x, y, f(x,y)), what is the surface normal direction?

Method one (cross product)
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The partials in x and y give us two
tangents which are vectors in the
plane touching the surface.

To get a vector normal to both of
them, take their cross product.
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In case the claim that the
partial derivatives give
tangents is confusing.
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From Normals to Shape
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From Normals to Shape

Given (x, y, f(x,y)), what is the surface normal direction?

Method two (level curves)

� 

Given a surface, S,  specified by  g(x, y,z) = 0

!g(x, y,z) is normal to S

So, find g(x, y,z)  such that g(x, y,z) = 0 is our surface

From Normals to Shape

Given (x, y, f(x,y)), what is the surface normal direction?

Method two (level curves)

� 

Given a surface, S,  specified by  g(x, y,z) = 0

!g(x, y,z) is normal to S

� 

g(x, y,z) = z ! f (x, y)

So, find g(x, y,z)  such that g(x, y,z) = 0 is our surface

From Normals to Shape

Given (x, y, f(x,y)), what is the surface normal direction?

Method two (level curves)
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g(x, y,z) = z ! f (x, y)

� 

!g(x, y,z) = ?



From Normals to Shape

Given (x, y, f(x,y)), what is the surface normal direction?

Method two (level curves)
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g(x, y,z) = z ! f (x, y)
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!g(x, y,z) =

� 

(! fx ,  ! fy ,  1)

From Normals to Shape

Either way, 
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ˆ n ! (" fx ,  " fy ,  1)
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It should be clear that    f x = !
nx

nz
  and  f y = !

ny

nz
 

(In general, n will embody the albedo, so we must be
prepared for an arbitrary scale factor in n---most easily
dealt with using the above ratio if we want fx and fy).

From Normals to Shape

So, if have the normals, we can estimate the derivatives of f(x,y)

Minor point for those who have vector calculus: If we assume
that fx and fy are the derivatives of a differentiable function,
f(x,y) we can further check (or constrain) that fxy=fyx.

We can recover the surface height at any point by integration
along some path. For example, if we declare the origin to be at
height C, and go along the x axis, then parallel to the y axis:
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Surface recovered by integration



Color (very briefly)

Color is a sensation

Usually there is light involved, and usually there is a
relationship between the world and the colors you see

Your brain has a big effect on the colors you see

We will focus on what colors mean to a camera which is
much simpler

Color for a camera (R,G,B) is a very limited sampling of
spectral light energy (why three values?)

Recall Image Formation (Spectral)

* dλ
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(R,G,B) =
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!

Recall Discrete Version

Represent the light by a vector, L

Consider a matrix R whose rows are the discretized version
of the response functions.

Let C be a vector of camera responses (i.e., (R,G,B)T)

Then

C=R*L
It is common to use ρ for both camera responses (as we did earlier in the course) and albedo
as we have just done so. To reduce confusion, we will switch to C for “camera”.

From previous slide

C=R*L

R is not full rank (typical values are 3 by 101 or 3 by 31)

First key observation is that you cannot recover L from C
(L is spectra, C is RGB)

Second observation---many spectra can have the same RGB.
These are metamers (the spectra are a metameric match).

(This is the essence of color reproduction)



(R,G,B) depends on the light, the surface, and the camera

By definition, the spectral reflectance, satisfies

Spectral reflectance
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S(!) =
L(!)

E(!)
   where  is E(!) incoming and L(!) is outgoing

� 

So we get L(!) from before by :    L(!) = E(!)S(!)

Spectral reflectance
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So we get L(!) from before by :    L(!) = E(!)S(!)

Recall      C
k
= L(!)" R
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(!)d!

Now,       C
k
= E(!)S(!)" R

(k )
(!)d!

Now consider “white” light (255, 255, 255)
• This is relative to the camera!
• By definition, this is the color of perfect diffuse, uniform, reflector

Suppose that a surface has color (RS, GS, BS) under white light
• Naively, this is the “color of the surface”

• (Naïve, because surfaces don’t have color until you turn on the light, and it
matters what the color of the light is!)

• The albedo in each channel is
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Naive Color Model



Naive value for the color of the surface under  a different
light, (RL, GL, BL) is given by:

Naive Color Model (2)
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(R,G,B) = (!
R
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L
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G
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L
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This is naïve because we assume that the part of the light
that stimulates one channel, does not interact with the
albedo of any other channel.

Alternatively, everything about the surface color can be
captured in these 3 numbers.

This is the “diagonal model” for illumination change.

Diagonal Model for Color

(Same scene, but different illuminant)

Light color 
(RL1, GL1, BL1)

Light color
(RL2, GL2, BL2)

Diagonal Model for Color

(Same scene, but different illuminant)

Light color 
(RL1, GL1, BL1)

Light color
(RL2, GL2, BL2)

Diagonal model assumes that all the (R,G,B) in the left image
change by the ratio of the lights
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Estimates of the albedos for each channel

One way to
understand the
above equations



• In matrix form

• Note that this says

Diagonal Model for Color
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(albedo estimate for the channel)

• Note that this says

• This would mean

• Or equivalently

• But this is not generally true!

Diagonal Model for Color

(etc, for G, B)
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• But expression holds when
• Surface reflectance is uniform
• Sensors are delta functions

• Naïve approximation is relatively good when the camera
sensors are “sharp” with minimal overlap.

Diagonal Model for Color
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