Light color ‘o "
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Diagonal model assumes that all the (R,G,B) in the left image
change by the ratio of the lights

One way to
understand the
above equations

Estimates of the albedos for each channel

Light color
R, Gp,. Bry)

Diagonal Model for Color
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(albedo estimate for the channel)

Diagonal Model for Color
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¢ This would mean

* But this is not generally true!

In general,

Diagonal Model for Color
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But expression holds when
¢ Surface reflectance is uniform
e Sensors are delta functions

Naive approximation is relatively good when the camera
sensors are “sharp” with minimal overlap.




Color and specularities

* Dielectric surfaces are well approximated by a specular
part and a Lambertian body part.

specular
direction

Specular surfaces

Important point: The specular part of the reflected light usually carries the
color of the light

Technically, this is the case for dielectrics--plastics, paints, glass.
Important exception is metals (e.g. gold, copper)

Dielectric Specularities

Metallic Specularities




Color for recognition Color for recognition

* It seems natural to use color (as opposed to grays in a * It seems natural to use color (as opposed to grays in a
B&W image) to recognize things--why? B&W image) to recognize things--why?

— Color has more information than grays

— Grays in a B&W image are subject to shading

9 — Light varies greatly in intensity--less so in chromaticity

d — Chromaticity is color without magnitude. For example

¢ r=R/(R+G+B) and g=G/(R+G+B)

— BUT the ambiguity between what part of the signal is due to light

and what part is due to the world remains.

Human color constancy demo

Demo omitted from archived slides because it does not
make sense in PDF.

However, note that the demo is testable material!




The Computational Colour Constancy
Problem

(Same scene, but different illuminant)

unknown light  standard light

Color constancy

Color constancy algorithms strive to map image pixels to useful
illuminant invariant values. One example is the image as if it
was taken under the known standard light.

Often done by estimating the illuminant, followed by color
correction (but there are other ways).

unknown light  standard light

Color Correction

Suppose that the image on the right was how the scene on the left
would look under a known, “standard” light.

Under that light a uniform reflective surface (white) is (r}.G;.5})

So, to correct the image on the left, we can estimate the color of white,
under the unknown light. Suppose it is: (Rx .Gy.By,

Then we can correct the image using the diagonal matrix from a few
slides back.

unknown light  standard light

Estimating the color
of the light

The hard part is to estimate the color of the light (i.e., (RVL;’G‘;//’B‘ZA//) )

Many interesting algorithms have been developed. Two simple ones:

Max RGB: R, =max(R) (Similarly for G and B)

pix

Gray world: (%)Rv‘é = a\_ze(R) (Similarly for G and B)
pir




unknown light  standard light

The two simple methods mentioned previously focus on the global
statistics of the image.

Estimating the color
of the light

More formally, one can set up an inference problem focused on
estimating the probability that the light is a certain color, given the
image data.

Another approach is find specularities (recall why this works!).




