Image Filtering Preliminaries

Denote the image by F (to follow the book).
Represent weights as a second image, H (the kernel).

Pretend that images are padded to infinity with zeros (so sums
don’t need limits).

To shift a function f (x,y) up and to the right by (a,b)
- f(xayb)

Correlation

Denote by @

Then the definition of discrete 2D correlation is:

Ri,j = Z Hufi,vfj E[,V
u,v

Puts filter on (i,j)

Correlation example

e e T

(Extra slide, not done in class).

Convolution

Denote by @
—  Others symbols include * (for 1D) and ** (for 2D).

The definition of discrete 2D convolution is:

Ri,j = ZHi—u,j—v F;,v

u,v

Notice weird order of indices (includes the flips)




Convolution example
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(Extra slide, not done in class).

Properties of R,;=XH.,;. F.,

u,v

e Linear
¢ Commutative
¢ Associative (Can save CPU time!)

(A®B)®C=A®(B®C)

* Output is a shift-invariant function of the input (i.e. shift the
input image two pixels to the left, the output is shifted two
pixels to the left)

* Converse of above is true: If a system is linear and shift
invariant, then it is a convolution.

Shift invariant linear systems (§7.2)

Shift invariant
—  Shift in the input means we simply shift the output
— Example: Optical system response to a point of light
+ Light moves from center to edge, so does its image

Linear shift invariant
— Can compute the output due to complex input, based on the response to a single point input
+ Discrete version---function box(x,y) is zero everywhere except at (x’,y’) where is is 1.
+ Continuous version---delta function

f(x,y) is a linear combination of shifted versions of box(x’,y’)

Rewrite f{(i,j) as a sum over its natural basis

i, j)= box(i—u,j—v)f(u,v

f( ]) 2 2 ( J )f( ) Box shifted by
(u,v). Note
subtraction!

Given that
Response(box (i, j)) = h(, j)

Shift invariance means that
Response(box(i—u,j—v))=h(i—u,j—v)

Linearity means we can bring
the response inside the sum.

Response(f(i, ) =R, = >, >, h(i—u,j—v)f(u,v)

(Convolution by h)




Response as sum of basis functions (§7.2)

The response is linear combination of shifted versions of the
kernel

The weights are the values of the function being convolved

The shifted versions of the kernels form a basis over which the
result image is constructed

Thinking of an image as a weighted sum over a basis is a
generally useful idea—e.g., Fourier transforms.

Convolution example (from MathWorks website)
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For example, suppose the image is

(Note two flips of kernel)
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To do the complete convolution, set A and h

as above in Matlab, and do conv2(A,h,’'same’).
Try also conv2(A,h) --- make sure you
understand the difference!

Filters are templates

Applying a filter at some point ¢  Useful intuition
can be seen as taking a dot- filters look like the effects
product between the image they are intended to find

and some vector filters find effects that look
like them

Filtering the image yields a set
of dot products

Zero mapped to gray

Positive responses

Scaled to have min 0, max 255




Zero mapped to gray

Scaled to have min 0, max 255

Normalized correlation

Think of filters of a dot product

— problem: brighter parts give bigger results even if the structure is
same (often not what you want)

— normalized correlation output is filter output, divided by root sum of
squares of values over which filter lies
hef
f

(f is limited to where h is non zero)

— Can think in terms of angle between vectors. Recall

hef

cos(0)= w

(|h] is not relevant to this problem)

Slide was skipped in lecture;
included for reference.

Normalized correlation

Some tricks of the trade

— Consider template filters that have zero response to a
constant region (helps reduce response to irrelevant
background).

— Consider subtracting average of image over filter area
when computing the normalizing constant (can increase
sensitivity).

Finding Edges

Edges reveal much about images

Edge representations can be seen as information compression
(because boundary is fewer pixels than the inside)

Edges are the result of many different things

— simple material change (step edge, corners)

— illumination change (often soft, but not always)

— shading edges and bar edges in inside corners

An edge is basically where the images changes---hence finding
images is studying changes (differentiation)




