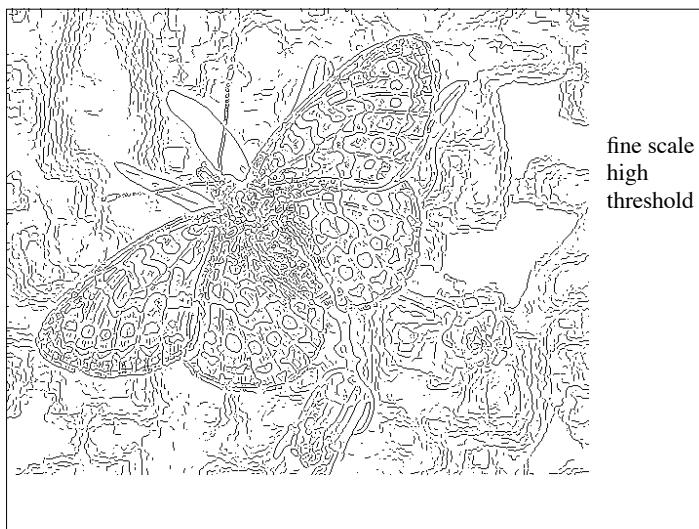


Difficulties

- Theory does not really match what happens at corners and edge detectors often do badly at them.
- Edges aren't bounding contours (this is the hard part!)
- Scale affects contrast. Typically one analyzes images at different scales to find different structures.



Fourier methods

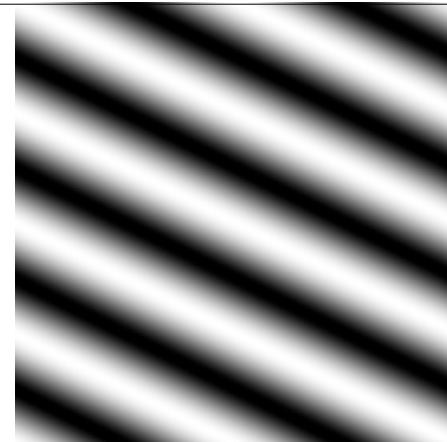
- Brief mention. We don't have time to go into this topic fully!
- Fourier methods give insight into image processing
- Provides a principled way to think about reversing the effect of a convolution (e.g., deblurring).
- Provides a way to speed up convolution (depending on the work flow).
- SEE SUPPLEMENTARY MATERIAL AND OPTIONAL ASSIGNMENT FOR MORE DETAILS.

Bases for Images

- Represent function (image) with respect to a new basis
 - Think of functions (images) as vectors with many components
 - This means that they are a weighted sum (linear combination) of basis vectors
 - We can represent the same entity as a linear combination over sets of different basis vectors
 - In canonical/usual form the basis vectors are $\text{box}(i,j)$ (discrete) or delta functions (continuous).

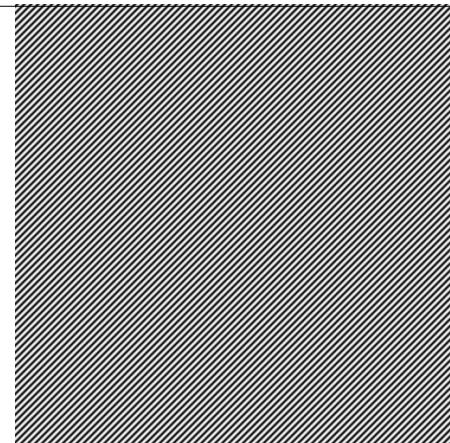
- In Fourier analysis, the basis vectors are **sinusoids**

Example 2D Fourier basis function



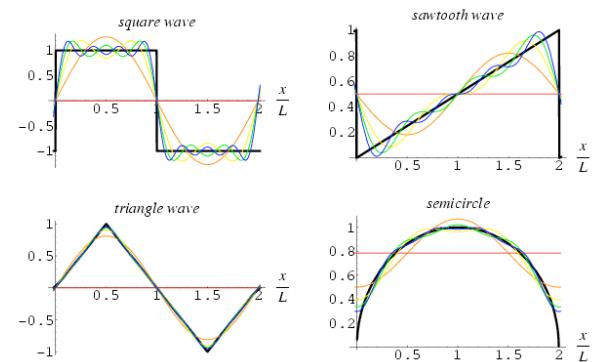
Another example

Yet another



Introduction to Fourier methods

- A periodic function (vector) can be decomposed into a sum of sines and cosines
- Sines and cosines are **orthogonal**
- This forms a new basis for the function (vector)

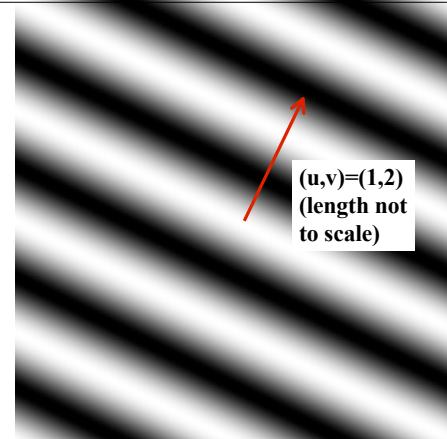


<http://mathworld.wolfram.com/FourierSeries.html>

The 2D Fourier Transform

- Need both sines and cosines (in the general case)
- In 1D the frequency (a single number) tells us which sine (or cosine)
- In 2D we have frequency and orientation (period and direction)
- Encode these with a pair of numbers, (u, v)

To get some sense of what basis elements look like, we plot a basis element --- or rather, its real part --- as a function of x, y for some fixed u, v . We get a function that is constant when $(ux+vy)$ is constant. The magnitude of the vector (u, v) gives a frequency, and its direction gives an orientation. The function is a sinusoid with this frequency along the direction, and constant perpendicular to the direction.



-1

1

The 2D Fourier Transform

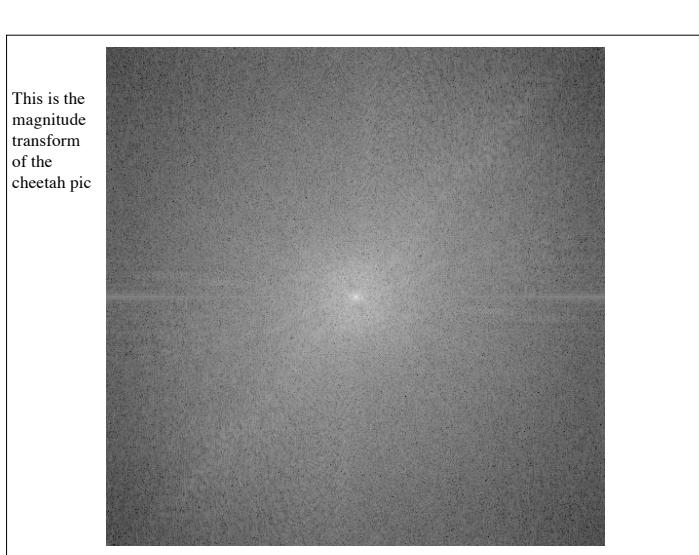
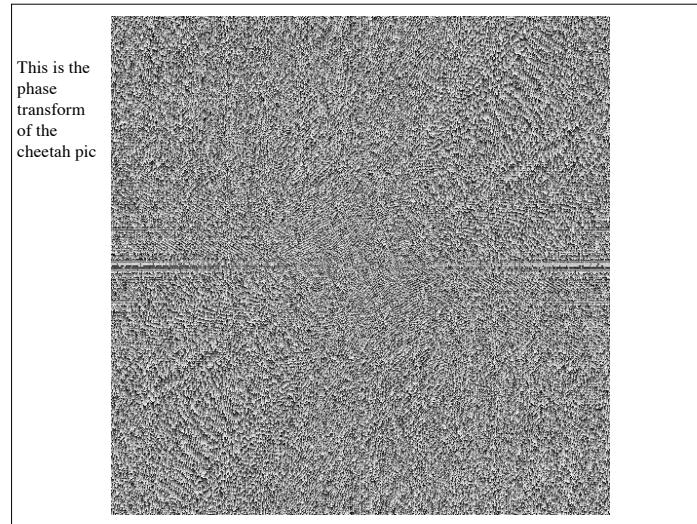
- We use complex numbers for convenient representation
- Recall that $e^{i\theta} = \cos(\theta) + i \sin(\theta)$
- We use the basis functions
$$e^{-i2\pi(ux+vy)} = \cos(2\pi(ux+vy)) - i \sin(2\pi(ux+vy))$$
- (u, v) gives the frequency and orientation of the sinusoids

Phase and Magnitude

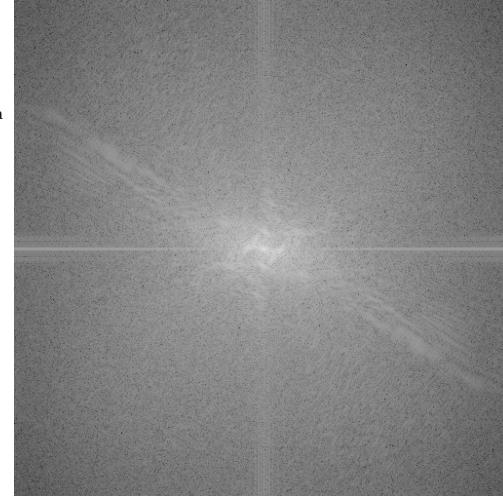
- Fourier transform of a real function is complex valued
 - transform of image becomes two images (real and imaginary part)
 - difficult to plot, visualize
 - instead, we can think of the phase and magnitude of the transform
- $z = a + bi$
 - Phase angle: $\theta = \arctan(b/a)$
 - Magnitude: $|z| = \sqrt{a^2 + b^2}$
- Magnitude combines both cosine (real) and sine (imaginary) terms
 - Large magnitude means large energy for that (u, v)
- Phase is the relation between cosine and sine terms

Phase and Magnitude

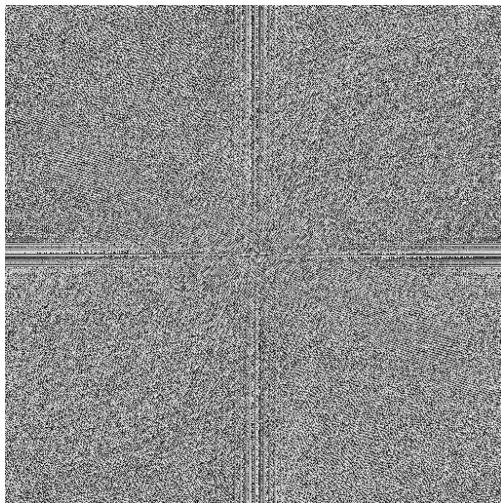
- Curious fact
 - all natural images have about the same magnitude transform
 - hence, phase seems to matter, but magnitude largely doesn't
- Demonstration
 - Take two pictures, swap the phase transforms, compute the inverse - what does the result look like?



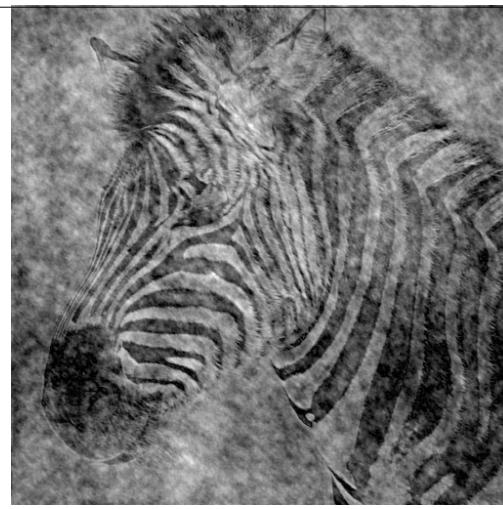
This is the
magnitude
transform
of the zebra
pic

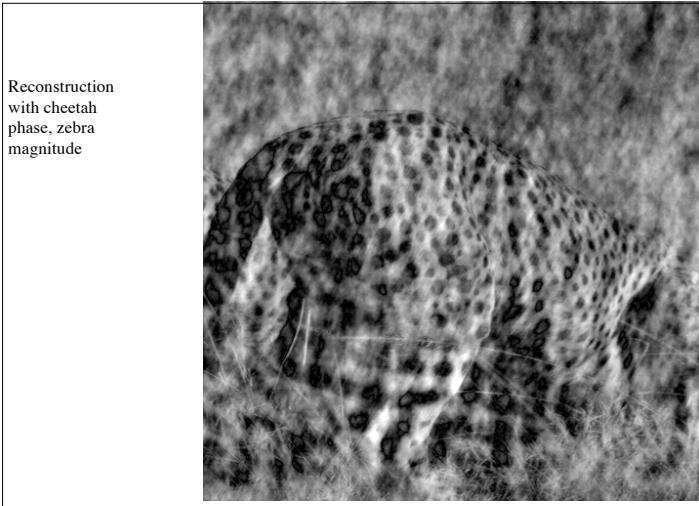


This is the
phase
transform
of the zebra
pic



Reconstruction
with zebra
phase, cheetah
magnitude





Fourier Transform (continued)

- Important facts
 - The Fourier transform is linear
 - There is an inverse FT
- Important observation
 - The Fourier transform is global--the value for each (u,v) is a function of the **entire** image.
 - (This is why it is difficult to visualize/understand)
- Relationship to noise and smoothing
 - Noise is generally high frequency
 - Smoothing strategy
 - Take FT
 - Threshold higher frequency
 - Invert

The Convolution Theorem

- Important result which can have practical impact (convolution theorem)

$$F(a \otimes b) = F(a)F(b)$$
- (Depending on your workflow, using the DFT for convolution can save time).
- A strategy for inverting the effect of a convolution

$$a = F^{-1}(F(a)) = F^{-1}\left(\frac{F(a \otimes b)}{F(b)}\right)$$

Fourier Transform (practice)

- Because of the convolution theorem, the FT gives a convenient way to invert the effect of convolution.
 - For example, often blurring can be modeled as a convolution, and the FT gives a convenient way to think about de-blurring.
- Fast ($O(n^2 \log n)$) methods exist to compute discrete version of Fourier transform (DFT2 in Matlab, IDFT2 for the inverse).
- If we assume that the image is periodic and symmetric then only the cosine terms count and we can avoid imaginary components which can speed up and simplify some tasks (cosine transform; DCT2 in Matlab, IDCT2 for the inverse).