Scale invariance

SIFT achieves scale stability by focusing attention on structure that is
defined in terms of scale.

If a structure has an inherent scale, then it can be extracted from an

image of unknown scale by considering that image at different scales.

Image scale space

—  Consider the images at many scales

—  Each scale leads to a different blurry image

—  Consider sigma as a 3rd coordinate

— So an image “cube” now is (x,y,sigma)

— In what follows, we use a difference scale space

For each scale we use the difference between the image at
two successive (discrete) scales (6 and ko).

This detects structure in a scale invariant way (think blobs)

Keep points that are optimal in three directions: (x, y, ©).
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Figure 2: Maxima and minima of the difference
pixel (marked with X) to its 26 neighbors in 3x3
with circles)

Distinctiveness

For points that are optimum from previous ...

—  These points have an associated scale

Only points in regions that have significant edges in two directions

are considered “distinctive” interest points (reject the rest)

—  Corners localize better than edges

—  The gradient gives only a single direction

—  We need to consider additional information around the point to
distinguish corners from edges

—  One method is to collect edge information in a region around the point

— Lowe (04) instead uses a method based on principle curvature

Direction

For points that have not been rejected ...

— These points have an associated scale G.

Consider a disc with radius 36/2

Look at edge direction a locations in this disc, and build a histogram
of the angles.

Values in a dominant peak provide a direction

— A second direction can create a second keypoint if it is at least 80% as

popular.

From scale and direction, we can establish a coordinate system




Descriptor

* Capture the edge structure (essentially texture) in the
region (of size of order ) around the point in a vector
(Lowe 04 uses 128 elements)
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Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
From Lowe, IJCV 2004 the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

Invariant feature detection Invariant feature matching

e To “find” the object, match the local features

* Descriptor is invariant to scale and in plane rotation
— Feature had a natural scale
—  We established a direction

e Scaling and rotation can approximate out of plane camera
rotation view changes for small patches (locally planar)




Invariant feature matching

Nearest Neighbor search
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Should work similarly to non-rotated case.

Initial matching Constraining to correct . .
After pruning outliers
part of image based on p 9
other information (Covered later)

* Keypoints from an object map into an image in an organized way.

» We will study how to improve matching on this bases in the context of grouping.

Syllabus Notes

e Next topics segmentation, grouping and fitting.
e We will do perhaps half each of §14, §15, and §16.

Grouping




Segmentation, Grouping, and Fitting

e Collect together tokens that belong together

e Gives a compact representation from an image/motion sequence/set of
tokens that can be significantly easier to deal with

e What is the “right” group is often dependent on the application
e Broad theory is not known at present (and may not exist)

e These are general concepts--apply to many things, not just breaking
images into regions of the same color.

Segmentation, Grouping, and Fitting

¢ Terminology varies and the usage and the meaning of segmentation,
grouping, and fitting overlap. Somewhat common usage:

— Grouping (or clustering) is quite general sometimes suggest a relatively
high level (group the black and white halves of a penguin together).

— Segmentation is suggestive of the grouping is done at a low level and is
quite spatially (or temporally coherent) given regions in time or space.

— Fitting when the focus is on a model associated with tokens. Issues:
+ which model?
+ which token goes to which element in the model (correspondence)?
* how many elements in the model (how complex should it be)?

General ideas

e Tokens

— whatever we need to group (e.g. pixels, points, surface elements)
¢ Top down segmentation

— tokens belong together because they lie on the same object
* Bottom up segmentation

— tokens belong together because they are locally coherent

¢ These two are not mutually exclusive
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‘Why do these tokens belong together?




Basic ideas of grouping in humans

¢ Figure-ground discrimination
— grouping can be seen in terms of allocating some elements to a
figure, some to ground (impoverished theory)

¢ Gestalt factors
— Elements in a collection of elements can have properties that
result from relationships (e.g. Muller-Lyer effect)
— A series of factors affect whether elements should be grouped
together
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The Muller-Lyer illusion; the horizontal bar has properties that come only from its membership in a group

The Muller-Lyer illusion; the horizontal bar has properties that come only from its membership in a group
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Background Subtraction

¢ If we know what the background looks like, it is easy to identify “interesting bits”
«  Applications

Person in an office

Tracking cars on a road

Surveillance
¢ Approach:

Use a moving average to estimate background image

Subtract from current frame

Large absolute values are interesting pixels

« trick: use morphological operations to clean up pixels (remove “holes™)

a) average of sequence

b) difference from background > T1 ¢) difference from background > T2

-
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d) using EM (discussed later)  e) Forground using EM (discussed later)

Higher resolution version of previous. Note increased impact of noise.

Segmentation as clustering

e Cluster together (pixels, tokens, etc.) that belong together

e We assume that we can compute how close tokens are, or how close a
token is to cluster.




Why is clustering hard?

Main reason

¢ The number of possible clusterings is exponential in the number of data points

Other important issues

e The number of clusters is usually not known

¢ A good distance function between points may not be known

¢ A good model explaining the existence of clusters is usually not available.
¢ High dimensionality

Data Representation

Most common is an N dimensional “feature” vector.
Most common distance is Euclidian distance.

Be careful with scaling and units!

Probabilistic modals finesse multiple modalities

Problems with correlated variables can be mitigated using
transformations and data reduction methods such as PCA, ICA.

Clustering approaches

¢ Agglomerative clustering
— initialize: every item is a cluster
— attach item that is “closest” to a cluster to that cluster
— repeat

¢ Divisive clustering
— split cluster along best boundary
— repeat

¢ Probabilistic clustering
— Define a probabilistic grouping model

Simple clustering approaches

e Point-Cluster or Cluster-Cluster distance
— single-link clustering (minimum distance from point to points in clusters
or among pairs of points, one from each cluster)
— complete-link clustering (maximum)
— group-average clustering (average)

— (terms are not important, but concepts are worth thinking about)

¢ Dendrograms

— classic picture of output as clustering process continues
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K-Means

Choose a fixed number of clusters (“K”)

Choose cluster centers (means) and point-cluster allocations
(membership) to minimize the error

> > ij —H;

ieclusters ( jeelements of i'th cluster

2

x’s could be any set of features for which we can compute a
distance (careful with scaling)

K-Means

Want to minimize

2
ij —H;

ieclusters | jeelements of i'th cluster

Cannot do this optimization by search, because there are too many
possible allocations.

Standard difficulty which we handle with an iterative process (chicken
and egg)

K-Means algorithm (intuition)

If we know the cluster centers, the best cluster for each point is easy to
compute
—  Just compute the distance to each to find the closest

If we know the best cluster for each point, the cluster centers are also easy to
compute
—  Just average the points in each cluster

Algorithm
— 1) Guess one of the two.
—  2) Alternatively re-compute the values for each




K-means flow chart

Choose K

Guess ' e OR... . N Guess

membership the means
Assume membership is Assume means are fixed.
fixed. Take averages Find cluster
to get cluster with closest N
centers mean for
(means) each

point




